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1. Introduction 

Two types of decision support systems (DSS) are discussed in Chapter 2: model-
oriented and data-oriented. The assumption underlying model-oriented support is that 
accurate models of the decision problem are available or can be constructed prior to 
decision making. This approach includes optimization, simulation, decision analytic 
and statistical models. Various statistical methodologies can be used both to construct 
models and to estimate their parameters. Traditionally, these methods have been ap-
plied to relatively small data sets; the resulting models were used to verify given hy-
potheses, identify relationships among variables, and formulate predictions and sce-
narios. 

Statistical methods require significant expertise in their application and interpreta-
tion of results. These methods are difficult to use when there is little explicit knowl-
edge about the issues and when the problems are ill-defined but described by large or 
very large amount of data. Therefore, these methods are normally used by analysts 
and researchers rather then directly by decision makers. While one may suspect that 
valuable knowledge is buried in the data, it was not until recently, that tools for 
knowledge extraction and presentation in an easily readable form have became avail-
able.  

Three types of developments made data-oriented DSSs viable and effective. Artifi-
cial intelligence (AI) adopted many statistical methods and embedded them in systems 
that efficiently search for patterns, derive rules, classify data according to some higher 
level concepts, and construct models from very large databases (Briscoe and Caelli 
1996; Kohavi 1998). AI researchers have also developed methods to deal with such 
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databases, including neural networks, genetic algorithms, and rough sets (Aasheim 
and Solheim 1996; Bigus 1996; Pawlak, 1995). The second development involves 
technologies for the construction of multidimensional databases and data warehouses 
that provide raw materials used by AI systems (Inmon, 1996). Finally, data manipula-
tion and visualization techniques allowed the user search and view databases from 
different perspectives and to display models in forms that could be understood by 
decision makers (Fayyad, 1996). 

The process of deriving or extracting knowledge from data is known as knowledge 
discovery in databases (KDD).  It comprises several distinct steps one of them being 
data mining which specifically deals with model construction. Data mining is used to 
make generalizations from a given set of data. Generalization involves the construc-
tion of a model from the data that can be used to describe the population or predict the 
behavior of its members. While generalization is also one of the key issues in statis-
tics, there is a significant difference between the two. In statistics, the issue of gener-
alization involves the definition of a population to which to generalize. This brings in 
issues of random sampling. Without careful attention to the sampling method one 
cannot guarantee statistical generalizability of models.  

In data mining, there is no attempt to sample randomly from some identifiable 
population. In fact, during the first four steps of KDD, the database is viewed more as 
a population than as a sample. In the later steps, however, the results of the data min-
ing and modeling processes are extended to units outside of the original database. One 
can regard this as akin to the generalization of mathematical models of processes that 
are typical of the physical and engineering sciences, where the generalization is non-
statistical in nature. Alternatively, one can identify this process with the statistical 
notion of a finite population generated from a super-population (see, for example, 
Skinner et al., 1989, p. 14).  

In the data mining context, the finite population under study (that is, the database), 
would be regarded as a random realization from some hypothetical super-population. 
As an example, this would be a natural conceptualization for a database consisting of 
scanned data records from stores in a particular chain, for a single month. A key as-
sumption for the extrapolation from such a data mining exercise to future time periods 
would be that the processes studied, or discovered, will not change structurally over 
time (an implicit assumption in all economic forecasting). Either way, the generaliza-
tion of the results relies on two key assumptions that underlie data mining methods:  
• = a model can be approximated with some relatively simple computational models, 

at a certain level of precision, and  

• = the data available in the target database is sufficiently representative of the proc-
esses of interest that the generalization is warranted.  

It is clear that these assumptions are not very precise. This may be the reason why, 
in statistics, data mining (also known as data dredging) has traditionally been referred 
to as a sloppy exploratory analysis with no prior specification of hypotheses (Gly-
mour, Madigan et al., 1997). Recently, however, data mining has become popular 
because it addresses the needs of business and other organizations in ways that other 
information systems do not address. Ease of use and intuitive interfaces coupled with 
often surprising and interesting results have led to a general, if sometimes uncritical, 
acceptance of data mining.  
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Several data mining methods based on rule induction are discussed and compared 
in Chapter 13. In this chapter we discuss the KDD process from the decision making 
and decision support perspectives. The benefits and shortcomings of data mining are 
presented with a focus on the potential contributions for decision support.  

The KDD process is outlined in Section 2. To illustrate the model construction ac-
tivity, we have used a popular and accessible decision tree method. In Section 3, the 
method is introduced and the resulting model discussed and compared with experts' 
knowledge and with another model obtained using a rule induction method. The re-
sults of the comparison give grounds for three experiments discussed in Section 4. A 
database with over 1,400 records has been used to formulate three descriptive models. 
Statistical methods are then used to evaluate these models and the results are pre-
sented. The potential of KDD for decision support in sustainable development is dis-
cussed in Section 4 together with a brief discussion of the future developments in this 
area. 

The difficulties one may encounter in the effective use of the KDD and data min-
ing software do not diminish its usefulness. There have already been many successful 
applications, some of which are presented in the Appendix.  

2. Knowledge discovery 

Knowledge discovery in databases (KDD) is the process of identifying significant 
patterns in data or deriving compact, abstract models from data. It is used to obtain 
nontrivial information, that is, information that requires search and inferencing rather 
than straightforward calculation of some predefined quantities (e.g., totals and aver-
ages). KDD has evolved from the intersection of machine learning, pattern recogni-
tion, statistics, data visualization and high performance computing. These areas of 
study have been integrated to address problems of interpretation of large databases at 
a higher-level than provided by management information systems, query facilities and 
on-line analytic processing. 

The KDD process is both interactive and iterative. It includes issues of problem 
and scope definition, element selection, data standardization, model elicitation (i.e. 
data mining), and use of recurring patterns in models for developing strategies or pro-
cedures (Fayyad 1996; Brachman and Anand 1996). These steps are depicted in Fig-
ure 1.  
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Figure 1. Knowledge discovery process. 

Two important features of the KDD process are indicated in Figure 1. First, the 
process is iterative with possible loops between any two steps. Second, it relies heav-
ily on the knowledge pertinent to the problem, that is, domain (background) knowl-
edge plays a significant role in each step of the process. The process is used to ex-
trapolate models from databases, while incorporating background knowledge 
throughout.  

Domain experts, technology specialists, database documentation, and the end users 
can provide the domain knowledge necessary for this process. Knowledge about the 
issues under consideration is used to outline the initial problem and respective data 
elements. Knowledge is also required for the selection of data relevant to the problem 
and its standardization. Extrapolated models need to be verified, either through con-
firmatory statistics or background knowledge.  
 

2.1 Problem definition 

The first step in the KDD process is to obtain an understanding of the application do-
main, specify the expected outcomes of the process (user goals and expectations) and 
define the domain (background) knowledge that may be needed.  

Decision support based on model-oriented DSS is restricted to variables and mod-
els present in the system. The task of problem definition is not affected by elements 
outside of the stipulated model. In the absence of a model the initial KDD step re-
quires defining both the scope of the study and problem. This is performed in an itera-
tive manner; the user undertakes subsequent stages several times before arriving at a 
satisfactory problem definition.  

The prerequisite for both model- and data-oriented decision support is the identifi-
cation of the decision problem. This includes specification of the decision maker's 
objectives and decision variables (see Chapter 2). DSSs are used to determine the 
variable values so that the objectives can be achieved.  

The objectives of the decision maker guide the support process and provide goals 
for the KDD process. In other words, the KDD problem definition includes the speci-
fication of the goal of the process from the decision maker’s point of view. Two types 
of goals can be distinguished: verification and discovery (Fayyad et al., 1996).  

The verification goal requires prior specification of hypotheses by the decision 
maker; contrary to some observations, data mining is not necessarily "hypothesis free" 
(Glymor, 1997). The hypotheses one needs to formulate include the existence of the 
relationship between the goal (dependent) variable and other variables (independent) 
in the database, the type of relationship (for example, causal or functional) and the 
identification and exclusion of variables that may be disregarded in the verification 
process. From the decision support viewpoint the goal is to determine the appropri-
ateness of existing DSS models in light of the existing data.  

The discovery goal assumes that the process autonomously searches for relation-
ships that define concepts and models. Discovery can be used to obtain descriptive 
models of an object or process or to formulate predictions of future behavior of some 
entity. Further, this step involves analyzing the problem to assess if it is appropriate 
for data mining techniques. If it is, then an assessment is made concerning the avail-
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ability of data and the type of techniques to be employed. Discovery, for the purpose 
of decision support, is oriented toward the search for new models that can be used in a 
DSS. 

These two goals are not mutually exclusive; verification may lead to discovery and 
discovery requires verification. Their role is to obtain the initial focus for the study 
whose ultimate goal is to enhance DSSs and provide decision makers with relevant 
information and knowledge. 
 

2.2 Variable and data selection, and preprocessing 

The process of selecting appropriate elements (variables and samples) from the source 
database (assumed to be the population) relates to restricting the scope of decision 
support. In this step of the KDD process the variables and the data on which data min-
ing is to be performed are chosen.  

Domain knowledge plays a significant role in this step. Dealing with large data sets 
makes it relatively easy to obtain variables that are highly correlated or appear to be 
strong predictors of dependent variables. These variables, however, may not be casu-
ally related, for example, the observed correlation may be due to chance, or it may be 
a spurious correlation due to the concomitant variation with some undetermined 
causal variable. 

As an example of another non-causal relationship, consider the problem of plant 
disease diagnosis. The database may contain variables measuring the symptoms, dis-
eases and treatments of the observed plants. Assume further that a treatment is applied 
only after a diagnosis has been made. Treatments are highly correlated with diagnoses 
but, obviously, the causal effect is "from diagnosis to treatment" and not vice versa. If 
the treatment variable is not removed from the dataset then symptoms need not be 
considered in order to determine the disease. It may be thus sufficient to select treat-
ments to "predict" a disease. Obviously such a model is of little use to a decision 
maker who wants to be able to diagnose diseases and only after that decide on a 
treatment. 

Removal of confounding variables and variables that describe implications of goal 
(dependent) variables is an important component of data selection. It is no less impor-
tant, however, to retain variables that appear to be insignificant, or that might seem to 
have little in common with the decision support tasks and goal variables. While this 
may lead to a discovery of accidental relationships or spurious correlations, it may 
also provide interesting and previously unknown results.  

One of the objectives of the KDD process is to discover new knowledge and not 
necessarily to reinforce the decision maker's conviction. Data mining methods allow 
large amounts of data to be processed to identify variables that otherwise might have 
been ignored. This is one of the reasons for the feedback loops indicated in Figure 1. 
Preprocessing and data visualization help the decision maker remove variables that 
should not be considered and keep those that may have some prescriptive or descrip-
tive impact. This is part of the initial exploratory analysis used to provide a prelimi-
nary understanding of data.  

We mentioned earlier that in KDD the database is treated as a population. Data se-
lection may involve sampling from the database to obtain a sample on which data 
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mining can be performed. Models are generated (estimated, in statistical parlance) 
from the sample, known as the training set. Their validity is subsequently verified 
using the remaining (holdout) records from the database. 

Data selected for further processing may be incomplete and require cleaning and 
standardization. Decisions must be made about what to do with missing data fields. 
The task of element standardization is influenced by the choice of data mining meth-
ods. Further, data transformation may also be required. Processing of transformed 
data may lead to models with more explanatory power than processing the source data 
(John, 1997).  
 

2.3 Data mining 

The data mining step involves the selection and application of methods to construct 
models from data. The methods are used to formulate summaries and to identify sig-
nificant structures and relationships present in data. Data mining is used to develop 
models that are understandable and that can be intuitively explained. Statistical sig-
nificance and the validity of model generalization beyond the database are not consid-
ered in this step.  

Some authors consider query operations, on-line analytic processing, visualization 
and statistics as data-mining methods (Simoudis, 1996). Though these information 
processing methods are used in data mining, they do not meet the main objective of 
data mining which is exploratory model construction.  

Three types of models are distinguished in decision science: normative, descrip-
tive, and prescriptive (Bell et al., 1988). Normative models provide guidelines for 
right actions and involve the formulation of principles of alternative evaluation and 
choice, proposed as rules that decision makers ought to follow. Since KDD is in-
volved with historical data, it may provide information on how decisions were made 
and what their implications were rather than provide information about principles. 

Descriptive models are used to represent actual decision processes and the results 
of decision implementation. They are formulated on the basis of the observation of 
decision makers' activities and the analysis of their decisions. One method of con-
structing such models is through the formulation of hypotheses, and their verification 
with statistical methods. Data mining, a data-driven approach, can also be used to 
construct descriptive models.  

Prescriptive models focus on providing decision makers with support to make de-
cisions more effectively and to think more constructively. They are used to facilitate 
the analysis and assessment of information, and to manage decision problem com-
plexity. Prescriptive models can be obtained through the comparison of the expected 
and achieved outcomes, for example, from the comparison of plant treatments and 
their results. Data mining methods can be, we believe, used for this purpose. 

There are other types of models that are generally not considered in decision sci-
ence because they do not directly involve the generation of alternatives, their com-
parison and selection. These are predictive models used to determine the future behav-
ior of some entity. These models are important for decision support because they pro-
vide information about processes and entities that are outside of the decision maker's 
control. They are also used to determine parameter values for descriptive and pre-
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scriptive models. Data mining has often been used for the construction of predictive 
models (Fayyad, et al. 1996). 

In summary, we distinguish three data mining operations useful for decision sup-
port: 
1. Predictive modeling - used to generate a model that can be used to determine the 

future behavior of some entity. 

2. Descriptive modeling - used to generate models that provide high-level summary 
information and that explain relationships between variables in the database.  

3. Prescriptive modeling - used to construct models for the determination of deci-
sion variable values required to meet objectives specified by the decision maker. 

The three types of models can be constructed by the application of one or more 
data mining tasks. The tasks considered by data mining include: 
1. predicting the class to which an object belongs; 

2. predicting the dependent variable value given values of independent variables; 

3. formulating and describing clusters of similar objects ; 

4. describing a group of objects; 

5. finding and describing relationships and associations among variables; 

6. identifying deviations and changes in a distribution or behavior of objects; 

7. identifying variables that control the values of other variables. 

The first two tasks can be used for the development of predictive models, tasks three, 
four and five for the development of descriptive models and tasks six and seven for 
construction of prescriptive models. Note, however, that, some tasks may serve more 
than one function. For example, tasks used for description can also be used to specify 
elements of predictive and prescriptive models. That is, the assignment of tasks to 
models is indicative rather than exclusive. 

Data mining methods have been developed to perform specific tasks. These meth-
ods include association rules, cluster analysis, Bayesian classification, decision trees, 
rough sets, neural networks, and genetic algorithms (Kohavi, Becker et al. 1998; Paw-
lak, 1995; Srikant and Agrawal 1998; Weiss 1998).  
 

2.4 Model evaluation and interpretation 

Effective use of the KDD process requires an appraisal and confirmation of the ex-
tracted models.  This may be conducted in the form of traditional model testing and 
through confirmation obtained from the related literature and from domain experts 
(Glymour et al. 1997). Measures of "interestingness", or measures of intuitive expla-
nation, are often used to sift significant patterns or rules from other output. These 
measures include strength of rules (for example, number of rule precedents), statistical 
indicators (for example, goodness of fit) or simplicity values (Fayyad 1996; Mienko 
et al., 1996). Data visualization is also used to facilitate the evaluation of the signifi-
cance of extracted information and models. 
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To use KDD results effectively in decision support, interesting and valid models 
need to be incorporated into existing knowledge. This may be difficult due to struc-
tural differences between the proposed models and existing knowledge. The latter 
may also be imprecise. The representation embodied in models may differ from the 
experts' knowledge, requiring the resolution of syntactical conflicts. The meaning of 
terms and concepts in the database, and those obtained from data mining, may conflict 
with those of the experts, requiring the resolution of semantical conflicts. Direct in-
volvement of domain experts and decision makers is, therefore, essential in this step. 
Their verification and interpretations are necessary to convert models into knowledge 
and to incorporate them in DSSs.  

The activities conducted in this step often lead to the repetition of earlier steps of 
the KDD process.  

3. Mining data with decision tree methods 

Decision tree methods allow the determination of relationships between sets of vari-
ables. They are used to select independent variables to partition data recursively. 
Classification methods are used for categorical dependent variables and regression 
methods are used for continuous dependent variables (Breiman, Friedman et al. 1984). 

Several approaches to decision tree construction have been proposed including 
classification and regression trees (CART), chi-square automatic interaction detection 
(CHAID), and C4.5 (Briscoe, 1996). These approaches differ in the significance 
measurements used to select independent variables. The CART technique partitions 
data into two mutually exclusive subsets such that at least one of the resulting subsets 
has lower dispersion than the previous set of data. CHAID uses chi-square tests to 
calculate the association between the dependent variable and a chosen descriptive 
variable.  The C4.5 method partitions data into mutually exclusive subsets such that 
each of the resulting subsets has lower entropy (dispersion) than the previous set of 
data. 

Decision tree methods produce output that is easy to read and interpret. It can be 
represented as trees or rules; the latter format is especially useful for the development 
of knowledge-based DSSs. These methods have been implemented in many data min-
ing software packages, for example AnswerTree (SPSS, 1998) and MineSet (SGI, 
1998). They can be used for the construction of predictive, normative and descriptive 
models.  

We are interested in KDD and data mining inasmuch they can be used for decision 
support. Our objective is not to provide an exhaustive analysis of a particular method, 
nor to present a complex application. Rather, we attempt to outline the opportunities 
of the application of KDD to obtain models for decision support. We will also discuss 
some remedies for the difficulties that are inevitably encountered. For this purpose we 
have selected a popular and easy to understand data mining method and applied it to a 
small database.  

In this section we use the CHAID method to formulate a predictive model for a 
soybean disease problem; in Section 4 the same method is used to formulate three 
descriptive models.  
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3.1 Soybean disease problem 

One dimension of expertise is the ability to assess the relative importance and infor-
mativeness of symptoms present in a diseased plant and to identify the disease from 
the symptoms alone. The difficulty in diagnosing some soybean diseases, for example 
brown spot, alternari spot and frog eye leaf spot, is that they often have similar symp-
toms. This, according to Mahoney (1996), causes misdiagnosis of diseases even by 
domain experts. A method that identifies clusters of symptoms for particular diseases 
may provide experts with additional information and enhance their knowledge.  

Michalski (1980) notes that available diagnostic information regarding soybean pa-
thology surpasses by far what a single expert can encompass. This is due to similarity 
of symptoms and differences in local conditions that may introduce deviations be-
tween symptoms for any given disease. Further, symptoms for a particular disease 
may change slightly over time. The exploration of historical data with methods for 
identifying deviations and changes may reveal new trends and patterns.  

A classification method that can cluster symptoms and diseases and a model that 
can then be used to predict a disease given symptoms should be useful for decision 
makers with no deep knowledge of soybean diseases. Knowledge obtained from the 
KDD process may be used for explanatory and training purposes. Also domain ex-
perts and trained pathologists may use data mining tools to validate and possibly ex-
tend their knowledge.  

A generally accessible small soybean database is available from the MLRepository 
(1999). The data set consists of 307 cases, with a dependent variable of 19 classes 
(values). Each class represents a soybean disease and each case in the data set is diag-
nosed with only one type of soybean disease. Thirty-five descriptors of plant and en-
vironmental factors were recorded for a diseased soybean plant. The symptoms were 
clearly observable conditions obtained with no sophisticated mechanical assistance 
(Michalski, 1980).  
 

3.2 Decision tree  

To illustrate the application of data mining for the soybean disease problem we use  
the CHAID method implemented in the AnswerTree software (SPSS, 1998). Decision 
trees generated for all disease classes are too large to be depicted and discussed. For 
the purpose of this discussion we have selected six of the nineteen classes (values of 
the dependent variable) for which there are 200 cases in the database.  

The CHAID method compares the association between the dependent variable and 
the independent variable using Pearson’s chi-square test. It requires the specification 
of a minimum significance level value. Independent variables for which significance 
is below the minimum value are disregarded.  

The second parameter that needs be specified is the minimum significance level for 
merging branches. The CHAID method allows the user to group values (classes) of an 
independent significant variable, to form groups of values (categories). The procedure 
adds values to a group until the minimum significance level is achieved. The last re-
quired parameter is the minimum number of cases to be considered. If, at a node, the 
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minimum number is reached the procedure terminates and no further testing is done at 
this node. 

The minimum significance levels for independent variables and for merging 
branches were both set at 0.05. The minimum number of cases was set at 10. 

The decision tree for the soybean problem is given in Figure 2. For illustrative 
purposes we have truncated the tree to cover the brown-spot disease.  

The dependent variable is Diagnosis with six possible values listed in each node. 
The root (top-level) node comprises all 200 records of the database. The distribution 
of all records according to the identified diseases, that is values of the dependent vari-
able, is given (for example, there are 40 occurrences of the value photophthora-rot). 

At each node below the root level a significant predictive variable (calculated us-
ing Chi-square tests) is selected. Records are collected for specific value(s) of this 
predictive variable. For example, the variable Int_Discolor (internal discoloration in 
the stem) is the first predictor of diagnosis (Chi-square = 200 on five degrees of free-
dom) and the node for Int_Discolor = 0 is presented below the root level (see Figure 
2).  Predictive variables are recursively applied to the data, thus the application of a 
variable on a node is dependent on the variable(s) applied on preceding node(s). This 
condition is termed the "recursive" nature of decision trees (Weiss and Indurkhya 
1998). Hence, variable Plant_Growth depends on Int_Discolor. 

Branches indicate the alternative descriptions obtained from one or more values of 
a predictive variable in a node. In Figure 2 a branch is depicted at the second level for 
two values of the variable Plant_Growth.  

The size of the tree is controlled by the user. If desired, the tree can be constructed 
so that it represents most records in the training set. This would increase the applica-
bility of the model to those records, but reduces the chance that the model would gen-
eralize to the population. This situation is referred to as “over-fitting” the model to the 
training data. Analysis can be performed using only one dependent variable at a time. 

The accuracy of classification of the model was 86.5%. For this model accuracy 
rate was calculated using the same observations that were used to build the model. 
When the model is tested for accuracy, the most probable outcome of a terminal node 
is assigned the observation that meets specified conditions. This accuracy rate may 
not be a reasonable indication of the performance of the model in classifying new 
cases, as the model was tested on the same cases that were used to build it.  
 

3.3 Rule-based model 

Decision trees can be represented with rules. Each path leading from the terminal 
node to the root node is a rule. For each rule the likelihood of observing a particular 
class of the dependent variable is calculated (it is a percentage of all the observations 
at a terminal node).  

Four rules corresponding to the four numbered paths in the tree depicted in Figure 
2 are given in Table 1.  

Only rule 2 presented in Table 1 implies a single disease. The remaining three 
rules are not discriminatory because their conclusions indicate two or three possible 
diseases with a different degree of prevalence. This is the consequence of different 
diseases having similar symptoms. 
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Figure 2. Soybean disease decision tree 

 
We have also obtained rules that have little value. Consider the rule obtained from 

the path of which the terminal node is indicated in Figure 2 with an asterisk:  
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“If there is no internal discoloration in the stem, the plant growth is normal and the leaf spot 
size descriptor is not applicable, then the disease is anthracnose (100%).” 

This rule is misleading because it suggests that regular (healthy) conditions indicate 
anthracnose disease.  

The example of a misleading rule indicates the need for a preliminary analysis of 
observed models even before experts and decision makers became involved in the 
model evaluation and validation step of the KDD process. This analysis may also in-
volve removal of rules with many precedents if there are other rules that contain only 
a subset of these precedents and have the same consequents. Rules with many prece-
dents are highly specialized and considered "less interesting".  

Table 1. Rule set generated with the AnswerTree CHAID method  

Rule Symptoms  Disease (%) 

1 There is no internal discoloration in the stem AND 
the plant growth is abnormal AND 
the fruit pods are normal or diseased 

Anthracnose (61.54%) 
Brown spot (30.77%) 

2 There is no internal discoloration in the stem AND 
the plant growth is normal AND 
leaf spot size is above 1/8 inch AND 
the fruit pods are normal AND 
disease occurred in April, May or June 

Brown-spot (100%) 

3 There is no internal discoloration in the stem AND 
the plant growth is normal AND 
leaf spot size is above 1/8 inch AND 
the fruit pods are normal AND 
disease occurred in July 

Brown-spot (60%) 
Alternaria leaf-spot (20%) 
Frog-eye-leaf-spot (20%) 

4 There is no internal discoloration in the stem AND 
the plant growth is normal AND 
leaf spot size is above 1/8 inch AND 
the fruit pods are normal AND 
disease occurred  in August or September AND 
temperature is normal 

Brown-spot (22.6%) 
Alternaria leaf-spot (45.2%) 
Frog-eye leaf spot (32.2%). 

 
 
To analyze the model and assess its potential usefulness one can repeat CHAID for 

different values of the method parameters and compare the results. A model is robust 
if, for the given dataset, changes in parameter values do not lead to significant 
changes in the model. Such a model is of greater value for decision makers because it 
is less sensitive to occasional records or outliers in the database. 

Models are often verified using holdout data. The initial model is constructed from 
a sample drawn from the data base and assessed through the analysis of the remaining 
data. The two datasets are known, in data mining, as training and verification data sets 
respectively. The soybean dataset is small and therefore we used the entire set to con-
struct the decision tree and rules. The use of training and verification data, and the 
estimation of the performance of the rules are discussed in Chapter 13. 
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3.4 Model comparison 

Models obtained from data mining need be evaluated and verified (see Section 
2.4). There are several possibilities, including the use of a different data mining 
method, comparison of the models with other models available in the literature, and 
the assessment of the model by the domain experts.  

To compare rules obtained from the CHAID method we selected rules generated 
with AQ11, an inductive program developed by Michalski (1980) and applied to a 
different soybean database with 290 records. The observations were gathered from 
questionnaires completed by plant pathologists. The predictor and dependent variables 
available in these two data sets were identical. Rules that define brown spot disease 
obtained from the three sources are given in Table 2.  

Table 2. Expert knowledge, and AQ11 and AnswerTree results for brown spot disease. 

Expert knowledge  Inductive program AQ11  AnswerTree CHAID 

Leaf condition is abnormal  Leaf condition is abnormal   
Leaf spot halos are present    
Leaf spot water soaked mar-
gins are absent  

  

Leaf spot size is above 1/8 
inch  

Leaf spot size is above 1/8 
inch  

Leaf spot size is above 1/8 
inch  

Disease occurred in May, 
August or September  

 Disease occurred in May, 
August or September  

Precipitation is above normal Precipitation is above normal  
 Crop is repeated in the same 

field for more than a year  
 

 Not the whole field is in-
fected with the disease  

 

 Leaf is not malformed and 
roots are normal  

 

 No yellow leaf spot halos  
 No leaf spot water-soaked 

margins 
 

  No internal discoloration in 
the stem  

  Fruit pod is normal  
 

The three rules given in Table 2 contain some common precedents. There is one 
precedent present in all rules.  Several precedents are present in two but not all rules. 
The rule generated with AQ11 is most specialized and has seven precedents. CHAID 
generated the rule with the least number of precedents (4), thus one may assume that 
this rule is most general. Interestingly, the expert's knowledge does not contain nega-
tive precedents that indicate that a particular symptom is absent for the brown spot 
disease. Both programs generated such precedents.  

No rule from one source contradicts any other rule and none is a generalization of 
another. The question is if one should use all the rules or amend the expert's knowl-
edge with precedents that appear in the generated rules but that are absent in the 
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statement of experts. We believe that the answer to this question should be left to do-
main experts. 

4. Model verification 

In the preceding section we compared two models obtained from the application of 
data mining methods with expert knowledge. While such a comparison is useful, addi-
tional and detailed analysis is often required especially if the decision problem is 
complex or domain knowledge is not available. The data mining literature suggests 
model verification by means of sub-samples of the database (Kohavi, 1995). In the k 
fold cross-validation method, the database is partitioned into k, (k > 2) subsets. The 
model is constructed in k iterations, where in each iteration a different subset is used 
for calculating the accuracy of the model constructed using the remaining k –1 sub-
sets. Another approach found in the literature is to sample the database k times and 
average the results (Weiss and Indurkhya, 1998).  

In this section other approaches to model verification are presented. For this pur-
pose we use the database containing over 1,400 transcripts of negotiations conduced 
via the INSPIRE system and two questionnaires filled out by the users. The system 
and negotiations are discussed in more detail in Chapter 11.  

For the purpose of model verification three models are constructed and analyzed. 
As in Section 4, the CHAID AnswerTree method (SPSS, 1998) is used with a mini-
mum significance level of 5% for considering significant predictors and for merging 
branches. The decision trees are constructed using all available data. 
 

4.1 Model confirmation 

INSPIRE negotiations are anonymous and bilateral. Each user negotiates with their 
counterpart for up to three weeks. Upon completion of the negotiation users are re-
quested to fill in a post-negotiation questionnaire. Several questions pertain to the 
user's perception of their counterpart. One of the questions asks about the user's will-
ingness to work in future with their counterpart. We selected this variable (denoted 
workwopp) as the dependent variable. Forty-four variables were considered as possi-
ble independent variables. In this model we seek an explanation rather than predic-
tion; thus the model is descriptive and not predictive. 

The decision tree generated with the AnswerTree CHAID method (SPSS, 1998) is 
depicted in Figure 3. The following four variables have a relationship with the de-
pendent variable (variable name in parantheses):  
1. Whether the counterpart was honest or deceptive (opphones). 

2. Whether the counterpart was cooperative or selfish (oppcoop). 

3. How much control the user had during negotiations (control). 

4. Whether an agreement was reached (agr). 

There have been no similar experiments prior to the negotiations conducted via the 
INSPIRE system. The users are allowed to preserve their anonymity, they can be from 
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any country and region, and they can use several decision support techniques. We do 
not have access to any expert knowledge that may be used to verify the above model. 
Although cross-validation may possibly improve the results, the problem of further 
verification remains.  

To verify the model, logistic regression with the four descriptive variables and one 
dependent variable was conducted. An overall likelihood ratio test of the logistic re-
gression model yields a likelihood ratio statistic of 200.0 on four degrees of freedom, 
with a significance level, p, less than 0.0001. This provides evidence that the four 
variables included in the model make a strong contribution to describing the user's 
willingness to work with his/her opponent in future. A standard goodness-of-fit test 
indicates that the model fits the data well (p = 0.19). In other words, there is no reason 
to suspect that important explanatory variables have been omitted (Agresti, 1996). 

 

 

Figure 3. Decision tree for the users’ desire to work with counterpart. 

 
Logistic regression provides additional information. Each variable in the specified 

model has the following interpretation (under the assumption that the values of other 
variables are constant): 
1. opphones: The odds of a user agreeing to work with their counterpart are 3 times 

greater for those who believe that their counterpart is honest, than for those who 
believe that their counterpart is deceptive. 

2. oppcoop: The odds of a user agreeing to work with their counterpart is twice as 
great for those who believe that their counterpart is cooperative, than for those 
who believe that their counterpart is selfish. 
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3. control: The odds of a user agreeing to work with their counterpart are 7 times 
greater for those who believe that they are in control during negotiations, than for 
those who believe that are not in control during negotiations. 

4. agr: The odds of a user agreeing to work with their counterpart are 0.27 times 
greater for those who reach an agreement, than for those who do not reach an 
agreement. 

 

4.2 The case of two models  

Negotiators are often satisfied with inefficient (not Pareto-optimal) compromises. The 
second example considers the dependent variable opt (whether the final agreement 
was efficient).  There were twenty-two variables initially considered as possible pre-
dictive variables. 

 

 

Figure 4. Decision tree for the agreement efficiency problem. 

 
From the decision tree model depicted in Figure 4, it follows that the following 

three variables may be significant predictors for the dependent variable: 
1. Number of offers conveyed by user on the second-last day of negotiations (off_1). 
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2. Number of messages sent by user to their counterpart (msg). 

3. Whether there is activity forty hours prior to the deadline (act_dln). 

We conducted, as in Section 5.1, a logistic regression. In this model, however, only 
two variables (off_1 and act_dln) are significant, at the 5% significance level. Variable 
msg is not significant at this level. 

The msg variable is discrete, 0 < msg < + oo. The decision tree (see Figure 4) indi-
cates that of the possible values in the variable, only two categories have significant 
association with the dependent variable (opt).   

A second iteration of logistic regression was conducted, with the msg variable re-
corded into two categories: 1) no messages were conveyed by the user during negotia-
tions, and 2) at least one message was conveyed by the user during negotiations. The 
descriptive variables with significant logistic parameters are off_1, act_dln, and 
msgbin (dichotomized msg variable).   

An overall likelihood ratio test of the logistic regression model yields a likelihood 
ratio statistic of 24.6 with three degrees of freedom, (p < 0.0001). This provides evi-
dence that the three variables included in the model make a strong contribution to 
explaining the probability of reaching an efficient agreement. A standard goodness-of-
fit test indicates that the model fits the data well (p = 0.17). In other words, there is no 
reason to suspect that important explanatory variables have been omitted. 

The interpretation of the logistic regression for each significant predictor is (keeping 
other variables constant): 
1. off_1:  An additional offer sent on the second-last day of negotiations reduces the 

odds of reaching an efficient agreement by .5 times. 

2. act_dln: The odds of reaching an efficient agreement are 0.25 times lower when 
there is activity forty-eight hours prior to the deadline.  

3. msgbin: The odds of reaching an efficient agreement are .54 times higher when 
no messages are sent by the user. 

The presence of significant categories in msg might not have been considered 
unless there was prior knowledge that combining categories would increase the con-
tribution that the variable makes to estimating the probability of success. The use of 
CHAID, therefore, indicates the possibility of increasing explanatory power when 
only significant categories are considered. 
 

4.3 Interactions 

INSPIRE users have access to data visualization and decision support tools. One of 
them is the history graph that depicts the flow of offers and counteroffers between a 
user and their counterpart (an example is depicted in Chapter 11, Figure 6).  

In the third example we study the contributing factors to the use of the negotiation 
history graph. The dependent variable is graphuse (Whether the user viewed the his-
tory graph at any time during negotiations). There were twenty-three variables that 
might be related with the dependent variable. The decision tree for this problem is 
given in Figure 5. 
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Figure 5. Decision tree representation of history graph problem. 

 
From the initial set of variables the following five are related to the dependent 

variable: 
1. Number of offers received from counterpart during negotiations (ofr). 

2. Number of offers conveyed that included a message (ofrwmsg). 

3. Whether the user would increase use of Internet after using INSPIRE (after). 

4. Whether the user would use a similar system (to INSPIRE) in real life (nego). 

5. The user’s perception of their performance during negotiations (perf). 

From the application of logistic regression we find that all descriptors, except for the 
variable after, are significant at the 5% significance level. In the previous example 
(Section 5.2), the msg variable was found to be significant if dichotomized. In consid-
ering the after variable, there is no further refinement possible because it is a binary 
variable. This raises concern with respect to the choice of this variable in CHAID.   

Decision tree methods are used to construct models that represent interactive rela-
tionships among descriptive variables. Logistic regression measures the significance 
of the contribution a descriptor makes towards estimating a probability — interactions 
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among variables are not automatically included in a logistic regression model, though 
they can be separately coded and included as additional descriptive variables. 

Interactions can be efficiently explored with loglinear modeling (Agresti, 1996). 
We observed interactions between the dependent variable and the 3-way interaction 
between after*nego*ofrwmsg, and between the dependent variable and perf (a*b de-
notes interaction between variables a and b). Each m-way interaction (m ≥ 2) implies 
the existence of lower order interactions. The variable perf has no interaction with any 
other variables, and so, it has a direct interaction with graphuse. 

These initial results indicate a 3-way interaction between variables after, nego, and 
ofrwmsg. Such a high-order interaction is difficult to interpret. An approach to this 
problem is to divide the dataset according to a variable that appears in an m-way in-
teraction.  In this example, the dataset is divided into two subsets using the binary 
variable after. Loglinear analysis is used to construct further models on each of the 
constructed subsets. 

For the subset of data where all observations take a value of after = 0, it is found 
that the dependent variable has an interaction with the generating class nego*ofrwmsg 
and a direct interaction with variable perf. For the subset of data where all observa-
tions take on the value of after = 1, it is found that graphuse has direct interaction with 
variables ofrwmsg and nego. This step reveals that division of the initial data set has 
reduced the complexity of the existing interactions (from third-order to second-order, 
in one subset). A two-way interaction still represents complex interaction, and, there-
fore, further division is suggested. Correspondingly, the subset consisting of observa-
tions with values of after = 0 is partitioned using the values in variable nego. The sub-
set with after = 1 is held constant since there is no higher order interactions for that 
data. 

From the original set of data, there are now three subsets (after = 0 and nego = 0; 
after = 0 and nego = 1; and after = 1).  For the subset of observations where after = 0 
and nego = 0, it is found that the dependent variable has an interaction with variable 
perf alone.  For the subset of observations where after = 0 and nego = 1, it is found 
that the dependent variable has an interaction with variable ofrwmsg alone. 

Conducting logistic regression on each subset of data (using only corresponding 
descriptors) yields significant contributions of the descriptors to the estimation of suc-
cess: the user viewed the history graph at least once during negotiations. These mod-
els (and corresponding p-values at alpha of 5%) are presented in Table 8. This sequen-
tial division of the database to yield simple logistic regression is interesting in that it 
can be regarded as a secondary CHAID-type process. Presumably, some optimal 
compromise between the database division and simple model representation exist. 
This general issue is of importance for the use of KDD but it is beyond the scope of 
this chapter. 

Table 8.  Logistic regression models for each of three subsets of data 

Conditions of after and nego Descriptors 

after = 0 AND nego = 0 perf (p = 0.0121) 
after = 0 AND nego = 1 ofrwmsg (p = 0.0121) 
after = 1 ofrwmsg (p = 0.0001), nego (p = 0.0224) 
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5. Discussion 

In the previous sections we presented several potential difficulties with the use of 
the KDD for model construction and validation. The four examples are based on rela-
tively small databases with problems characterized by less than fifty variables. Large 
and very large databases and problems with thousands of potentially relevant vari-
ables will only multiply the difficulties of model validation and interpretation.  

The problems of applying KDD methods to real-life situations need to be ad-
dressed. At present, this requires direct involvement of experts and the use of statisti-
cal methods. This does not mean, however, that KDD is not useful and that it provides 
no new insights. It also does not imply that the role of statistical methods in model 
formulation and verification remains the same irrespective of the use of data mining 
methods. Statistical methods, as we have attempted to show in this chapter, comple-
ment and enhance data mining methods. The latter allow for easy and efficient model 
construction, while the former are used to assess, verify and interpret the results.  

The situation with KDD systems is similar to the earlier generations of DSSs that 
could not be used directly by decision makers. Instead, they were used by analysts and 
MS/OR specialists. Hence, one strategy for the effective utilization of KDD software 
is by back-office analysts who have an understanding of the domain as well as the 
software and methods. These experts may provide decision makers with interesting 
and relevant models or embed them in the DSSs that the decision makers use directly. 
Another strategy requires a significant extension of the capabilities of the existing 
software for KDD so that it can provide integrated support for all steps of the KDD 
process, including model validation.  

Systems for KDD are considered intelligent (Limb and Meggs 1994). This intelli-
gence, however, is limited to the use of AI mechanisms in the data mining software. 
At present the effort is primarily on data mining with other KDD steps only partially 
supported. There is little integration between the support provided during the different 
steps of the process.  

Knowledge discovery from databases is a novel approach for model construction 
and validation. It requires dedicated software, powerful computing and communica-
tion facilities and access to databases. Many developing countries face shortages of 
computers and software, however, efforts of their governments and international or-
ganizations help to alleviate these problems. In many chapters of this book large com-
plex DSSs have been developed and implemented in developing countries. Several 
examples of GISs, that have requirements similar to KDD, are discussed in chapters 3 
and 5. Voluminous data for both developed and developing countries is collected from 
satelites and by other means (NASA, for example, collects data at the rate of 50 giga-
bytes per hour). Investments in communication technologies will allow for efficient 
access to data and to KDD methods.  

Application of model-based DSSs in developing countries have been criticized be-
cause they often do not account for local indigenous knowledge and ignore local prac-
tices. Their incorporation into systems can be achieved through direct studies; an ex-
ample of this approach is presented in chapters 10 and 13. It is also possible, however, 
to extract information about local procedures and traditions from historical data de-
scribing communities and regions.  
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Annex. KDD and sustainable development 

1. Forest management  

The analysis of ecosystems, including studies of biodiversity, forest density, wildlife 
population and water pollution, is aided through images collected via remote sensing. 
Traditionally, statistical methods, such as linear discriminant analysis, were used to 
analyze images.  The use of these methods was cumbersome because of the very large 
amount of data. Flinkman et al. (1998) applied the rough set method (Pawlak, 1991) 
to analyze interactions between land uses, vegetation types, forest density, and other 
biotic, abiotic and anthropogenic conditions in the Siberian forest. The objective of 
their study was to identify key attributes for the formulation of sustainable forest 
management policies. 

Precise and robust classification of land cover is required to conduct environmental 
assessment and to formulate plans and management policies. Friedl and Brodley 
(1997) used three decision tree methods (univariate, multivariate and hybrid methods) 
to obtain models for land cover classification. The models were compared with mod-
els obtained from two statistical methods (maximum likelihood and linear discrimi-
nant analysis) and used cross-validation for model comparison. The study was con-
ducted on a global database, a database for North America, and one describing a for-
est in California. According to the authors, the decision tree models have accuracy 
comparable to statistical models. The advantages of the data mining tools include their 
good performance in the presence of disparate and missing data, and the ease of 
model construction given the complexity of the data. 
 

2. Precision agriculture 

Farming requires efficient management of resources (such as water and fertilizer) that 
needs to account for changes in the environment. Dong (1998) used remotely-sensed 
data to construct descriptive models of agricultural practices. The association rules 
analysis was used for this purpose. The author states that harvests from different fields 
can be mapped to each season and varying yields analyzed according to seasons and 
locations to determine the relationship between seasonality and location on crop yield. 
Farm managers and extension workers may use this information to allocate resources 
in order to maximize yield.  
 

3. Oil wells 

Oil drilling has significant impact on the surrounding eco-system. Selection of the 
type of mud where drilling is undertaken has, in turn, impact on drilling efficiency 
and costs, bore-hole instability and cleaning, and the cost of oil extraction. Project 
managers in an oil field in Oso, Nigeria encountered problems (for example, high 
incidents of stuck pipe and filter cake build up) and cost overruns when their deci-
sions to select mud types were based on experience, the available resources and per-
sonal preferences. To address these problems they used data mining techniques to 
choose between alternative mud types (Dear III, 1995).   
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A structured approach based on a decision tree method was devised in order to de-
termine the relationships between the attributes of mud type, drilling (including costs) 
and eco-system. The analysis revealed that mud types that were recommended by 
experience often led to higher costs, while types proposed with data mining and pre-
viously not considered, allowed lowering of the long-term costs (Dear III, 1995). 
 

4 Chemical pollutants  

Concentration of chemicals in the environment is regulated to minimize their impact 
on the ecosystem. This requires frequent assessment of chemical levels. Ranking sys-
tems, based on subsets of aggregated factors, have been introduced for this purpose. 
Aggregation, however, often does not include interactions among these factors which 
are required to determine acceptable levels of exposure. According to Eisenberg 
(1998) some of the ranking systems are highly complex and cannot be understood by 
decision makers and, therefore, are considered as “black boxes”. They provide esti-
mates of chemical exposure but not information about the uncertainties and sensitivi-
ties associated with these estimates.  

Eisenberg (1998) developed a methodology based on the CART decision tree 
method for the assessment of chemical exposure levels. It is used to identify proper-
ties of chemicals, conditions of the environment, and the relationships among chemi-
cal properties that are most important for classifying an area according to its exposure 
level. The CART method was used to derive classification rules of chemicals and 
identify factors affecting chemical exposure levels. These rules are also used for the 
analysis of changes in factors and corresponding changes in the classification (chemi-
cal exposure levels).  
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