

InterNeg Research Papers INR 01/05

ht tp: / / interneg.org/

Component-based Software Protocol Approach

Jin Baek Kim1 Gregory E. Kersten2 Stefan Strecker3 Ka Pong Law2

1 Concordia Institute for Information Systems Engineering, Concordia University
2 John Molson School of Business, Concordia University

1455 de Maisonneuve Blvd. W. Montreal, Quebec H3H 1M8, Canada
{jbkim, kersten, kplaw}@jmsb.concordia.ca

3 Information Systems and Enterprise Modelling, University Duisburg-Essen

Universitaetsstr. 9, D-45141 Essen, Germany
strecker@uni-duisburg-essen.de

Abstract
A major challenge in developing an e-negotiation system (ENS) is that the context of
negotiations such as negotiators’ characteristics, negotiation processes, negotiation rules, and
social implication are different case-by-case. This context dependency makes it difficult to
develop a general ENS applicable to wide variety of negotiation problems. In this paper, in
order to mitigate the context dependency issue, we propose to adopt the component-oriented
software protocol approach to e-negotiation systems and present a framework for e-negotiation
protocols that implements this approach. According to this framework, an ENS is developed by
designing a high level e-negotiation protocol which specifies the rules on allowed activities at a
certain state and the rules on how to change them depending on the activities performed. Then,
this designed e-negotiation protocol is executed by a general purpose ENS platform, which
integrates software components and executes the protocol. This approach allows one to easily
develop or modify ENS so that it can best fit into the context. We prove validity of our
framework by redeveloping two existing ENS’s - SimpleNS and Inspire – using the framework
for e-negotiation protocol model and an ENS platform that understands and executes the defined
protocol.

Keywords: e-negotiation systems, context dependency, negotiation protocol, negotiation
process design, component-based approach, software protocol

INR 05/03 2

1. Introduction

Activities involved in a negotiation can be classified into intrapersonal and interpersonal. Negotiators
may have a great degree of freedom in choosing intrapersonal activities (e.g. preparing a negotiation,
creating and evaluating the offers), while they should follow the rules explicitly or implicitly agreed
with the counterparts in selecting intrapersonal activities (e.g. sending the offers and messages). In
face-to-face (F2F) negotiations, the models of intrapersonal activities and the rules of interpersonal
activities are often implicit. In system supported negotiations, however, these models and rules of
activities should be explicitly considered and specified so that the system can effectively and
efficiently support decision making and communications in the negotiation.

Every negotiation which involves the use of information and communication technologies distributes
the work between its people and the technology. This allocation of work has to be agreed upon by the
parties. Even the use of a simple solution like email requires the negotiators’ prior agreement that they
communicate via email rather than face-to-face, snail-mail, fax or telephone. In other words the parties
agree on the use of certain rules governing some or all aspects of the negotiation. What rules need to
be agreed upon and what is their potential impact on the negotiation processes and outcomes becomes
one of the problems that researchers and practitioners alike are concerned. One reason for the failure
of the first generation of firms providing e-negotiation services which were established in the late 90s
(e.g., Ozro, Prowess and Tradeaccess) may be due to the rejection of the rules governing the division
of labour between people and software.

Negotiation protocol is a set of rules governing the intrapersonal and interpersonal activities in
negotiations. E-negotiation protocol, a negotiation protocol for e-negotiation systems (ENS), is a set of
the rules that control the interactions between the negotiators and ENS as well as the behaviour of the
ENS. E-negotiation protocols should contribute to achieve a better agreement by encouraging
negotiators to employ verified methods, to follow best practices, and to provide partial or full
automation (Vetschera et al. 2003).

Behavioural research posits that relevant negotiation activities depend on the negotiators’
characteristics and the negotiation context (e.g. problem structure, process of negotiation, relationship
between negotiators, etc.). These characteristics and context determine negotiators’ approaches,
strategies and tactics leading to the selection of specific activities in the different phases of a
negotiation.

Although a great deal of insight is provided by behavioural research, incorporating all these insights
into the ENS is difficult because of the huge number of possible combinations of the negotiator’s
characteristics, dependence of the negotiators’ behaviour on external factors (e.g., relationship with
other stakeholders, competing decision problems and the consideration of future situations), as well as
the complexity of the problem and process (Kersten 2005).

One possible approach to mitigate this context dependency issue is to separate conceptual e-
negotiation protocol model from the system platform that executes it. Through this way, the most
appropriate e-negotiation protocols can be created new or by modifying existing e-negotiation
protocols. In order to achieve this, the conceptual protocol model should be abstract enough to help
users focus only on essentials while it should contain the details enough to be deployed on ENS as far
as it can understand the protocol model.

Such a separation is especially desirable if the contexts are rather significantly different. The ENS
should be applicable and appropriate to many different contexts without changes as far as the

INR 05/03 3

difference is minor. In order to accommodate minor difference in contexts, the conceptual e-
negotiation protocol should allow defining protocols that give some degree of freedom in selecting
activities. For example, during the process, the negotiators may wish to review the problem, modify
their preferences, and add or remove issues. The freedom of performing these activities should be
allowed to fully fit into the context. On the other hand, however, the e-negotiation protocol should be
able to force the negotiators to undertake certain activities in order to reach a better outcome. For
example, forcing the negotiators to learn about the negotiation problem, consider their own objectives
and preferences, and evaluate the counterpart’s offer before making their own offers can improve the
negotiation outcome by encouraging the negotiators to make informed decisions. In these situations,
the selection of a particular activity opens a new path of activities which have to be contiguous; every
possible path selected by the user and/or ENS has to be connected and geared towards the desired
negotiation outcomes.

The dilemma between restricting the bargainers’ possible activities and providing the flexibility in
activities is the main issue of negotiation protocol design. The more activities the system mediates and
the more activities the system undertakes autonomously, the more restrictions are imposed on the
negotiators’ own choices. The framework for e-negotiation protocols should allow both considerations
to be incorporated when designing the e-negotiation protocols.

In this paper, we focus on the framework for modeling e-negotiation protocols that specify both
intrapersonal and interpersonal activities. The framework is conceptual enough to separate the
protocol design task from system development task, but contains the details enough to be deployed
and executed on a general purpose ENS that understands the framework. The framework allows to
model e-negotiation protocols that provide certain degree of freedom in user’s activities while offering
mechanisms to force activities. The formal representation of e-negotiation protocols provided in the
framework is a further refined version of authors’ earlier work on e-negotiation protocols (Kim and
Segev 2003; Kersten 2004; Kersten and Lai 2005).

The organization of this paper is as follows. In the next section, related literature is reviewed. Then,
we present a framework for modeling deployable e-negotiation protocols which adopts component-
oriented software protocol approach. In Section 4, we validate the framework by illustrating
redevelopment of two existing e-negotiation protocols using the framework. Finally, we summarize
our contributions and discuss future work.

2. Literature review

Negotiation support systems (NSS) are a class of group decision support systems (GDSS) designed to
support the negotiation activities of two or more parties in reaching an agreement in situations of
contradicting interests (Jelassi and Foroughi 1989). On a conceptual level, NSS consist of an
individual decision support systems (DSS) for each party and an electronic communication channel
between the parties (Lim and Benbasat 1992). Interactive, session-oriented (comprehensive) NSS
simultaneously support the entire negotiation process of all parties and enable the parties to
communicate directly with each other (Foroughi 1995). Functionalities of comprehensive NSS include
decision support in negotiation preparation (e.g. formulation of the negotiation problem, modeling of
preferences), in negotiation execution (e.g. evaluation of offers, graphical representation of
information), and in post-settlement activities (e.g. analysis of outcome efficiency) in addition to the
underlying electronic communication channel (Kersten and Noronha 1999).

Electronic negotiation systems or e-negotiation systems (ENS) are NSS which use internet
technologies for communication such as web-based NSS (Kersten and Noronha 1999) as well as NSS
based on email and other internet technologies, e.g. chat, streaming audio and video (Bichler 2003).

INR 05/03 4

The use of internet technologies has increased the popularity and diffusion of NSS in many
applications domains from personal negotiations to corporate procurement to legal dispute resolution
(Neumann et al. 2003, Yuan, 2004 #9).

Despite wide variety in approaches, most ENS’s have been developed with a specific negotiation
protocol in mind. Often, the protocol has been informally described as a part of cases or system
instructions. The lack of explicit and formal modeling of negotiation protocols eventually restricted
system’s capability to allow users to create new protocols or modify existing protocols (Kim and
Segev 2003).

Methodologies for modeling various business processes and developing systems supporting these
processes have been the main research issues of the workflow research community for more than a
decade (Stohr and Zhao 2001). Commercial vendors, consortia, and academic society of workflow and
business process management system provided various methods of defining workflows and business
processes. Workflow Management Coalition (WfMC) proposed XPDL (XML Process Definition
Language) for defining the processes(WfMC). Microsoft proposed XLANG and IBM proposed WSFL
as the business process definition language of their products – BizTalk and MQSeries. The most recent
version of BPEL4WS was proposed by IBM, Microsoft, BEA, SAP, and Siebel Systems in 2003. Its
main focus is to define Web Services-based executable business processes (BPEL4WS 2003).
According to Wohed et al. (2002), BPEL4WS has expressive power which is the union of XLANG
and WSFL. Most of them are based on Petri-nets or block-based language with control flows (Aalst
and Hofstede 2005). Aalst (2005) provides the survey of expressive power of standards and
commercial systems from the perspective of control-flow, data, and resource.

Benyoucef et al. (2001) and Bassil et al. (2002) approached ENS from the workflow management
perspective. They studied negotiation systems that help negotiators to coordinate interdependent
negotiations for two or more items. They used workflow management systems for building systems
for such combined negotiations. Negotiations that run on this system are based on auction type
protocol in which workflow management system is used to deals with interdependency.

Despite remarkable achievements of process models in the workflow management area, the unique
nature of negotiation processes prevents us from applying the models, techniques and algorithms to
ENS development. First, while ENS should deal with unstructured cyclic activities, workflow systems
have focused on repetitive execution of a highly structured flow of activities and on the data and
resources for performing the activity. Second, a process in a workflow system usually assumes
cooperative relationships among users while in most negotiations, the relationships between
negotiators are somewhere in-between competition and cooperation. Third, multi-party negotiations
require complex interleaving of many instances whose number is not known. Aalst et al. showed that
such type of processes are not well supported in many (commercial) workflow management systems
as well as standards.

Holsapple et al. (1998) and Bichler et al. (2003) provided a generic framework for modeling
negotiations and developing negotiation support systems developing negotiation support and e-
negotiation systems. However, these frameworks do not cover the details required for deployable e-
negotiation protocols.

Kim and Segev (2005) investigated Web Services as implementation technology of ENS and
BPEL4WS as modeling tool for negotiation processes. They showed a very structured negotiation
process—alternating offer negotiations—can be represented by BPEL4Ws and proposed market-based
process management architecture, but found problems in modeling less structured negotiations using
the BPEL4WS and other workflow oriented technologies.

INR 05/03 5

Kersten and Lai (2005) proposed a formal representation of e-negotiation protocols as well as
properties and desiderata of the protocols. As stated in the previous section, this work has been a
starting point of this paper while it is refined based on the insights and lessons we acquired while
modeling various e-negotiation protocols and developing a generic e-negotiation platform called Invite
system.

From the research methodology perspective, in the sense that the work in this paper is an outcome of
designing ENS and efforts to improve the development process, the proposed framework is science of
the artificial or design research discussed by Vaishnavi and Kuechler (2005). March and Smith (1995)
propose four general outputs of design research: constructs, models, methods, and instantiations.
Constructs are the conceptual vocabulary of a problem/solution domain. A model is a set of
propositions or statements expressing relationships among constructs. A method is a set of steps used
to perform a task. An instantiation is an operationalization of constructs, models, and methods. We
adopt this perspective and provide constructs, models, methods, and instantiations for designing
deployable e-negotiation protocols.

3. Framework for e-negotiation protocols

This paper focuses on how to model and represent e-negotiation protocols: negotiation protocols
which are deployable and executable on ENS. The ENS considered in this paper are the ones used by
humans where the key negotiation activities such as sending and reading offer are not automated,
although auxiliary activities which traditionally have been conducted by software, such as
computation of utilities, simulations, scenario generation, remain conducted by software. In future
research, this assumption may and will be relaxed. At this stage, however, we consider systems which
allow and help people to conduct negotiations on the web.

The proposed framework of e-negotiation protocols adopts the perspective of component based
systems and software protocol discussed in Section 3.1. The constructs defining the terms and
notations for e-negotiation protocols, and the model describing the relationships among the constructs
are presented in Section 3.2. In Section 3.3, common patterns in the negotiation protocol and methods
of implementing them are given. In Section 3.4, the table-based representation and instantiation of
constructs, models, and methods are explained.

3.1 Component-based systems and software protocol

The main purpose of e-negotiation protocol is to organize interactions between the negotiators and
ENS, i.e., negotiation activities performed via web-based negotiation systems. Activities can be
modeled at various level of abstraction. Therefore, it is important to define the level of activity that is
used as the basic unit when modeling e-negotiation protocols.

The World Wide Web is designed based on the metaphor of pages and hyperlinks (Berners-Lee and
Cailliau 1990). Therefore, page becomes an easily identifiable unit of activity in web-based
applications such as e-negotiation systems, and we view the page as a unitary medium or an
identifiable interaction element. Adopting this perspective, we model the e-negotiation protocol by
decomposing the negotiation into the level of activities that can associate with a page. In other words,
the atomic unit of activity in the e-negotiation protocol model is the page-level activity and e-
negotiation protocol is concerned with organizing pages.

Developing e-negotiation systems based on the component-oriented approach allows us to take
advantage of many well-known merits in component-based systems such as flexibility in the system,
easy maintenance and upgrade, reducing the development cycle time by reusing existing components,

INR 05/03 6

and so on. We focus on the e-negotiation protocols for component-based ENS.

Component is a relatively defined term. Sometimes a whole system may mean a component while a
component may refer to a small piece of code. The granularity of components to be used by the e-
negotiation protocol depends on the activities modeled in the e-negotiation protocol because the
foremost goal of the e-negotiation protocol is to support negotiation activities. Considering the page-
level as the granularity of the components considered in the protocol, e-negotiation protocol can be
viewed as an example of a software protocol that controls page-level components.

A software protocol is a set of rules that determine what or how unrelated objects or components
communicate with each other (Wikipedia). The software protocol for component-oriented systems
determines which component is executed and in what order. The software protocol also decides what
is to be done when a component’s execution results in success or in failure; it invokes another
component to be executed or—if it cannot determine a component—chooses one of the “fall-back
alternatives” (e.g., it terminates the system’s execution). In the system architecture separating the data
from the logic through the database, the role of the component is to read data from and to write data to
the database, to present data to the user, or to perform processing (e.g. image generation), and to
inform the protocol whether it executed its task with success or failure. An example of the software
protocol controlling the execution of four components (A, B, C, and D) is presented in Figure 1.

Figure 1. Protocol, components and database infrastructure

Viewing the e-negotiation protocol as a software protocol, the protocol is the set of rules allowing,
forbidding, and forcing page-level negotiation activities, which are specified by the rules on enabling,
hiding, and invoking page-level components.

It should be noted that activities and components defined at the page-level can be decomposed into
minuscule ones. In other words, an activity on one page may be broken into several smaller elements
(i.e. actions), and likewise, a component for a page may be decomposed into smaller components (i.e.
sub-components). For example, the construct offer page may comprise the form component which
writes the submitted offer to the database and the display component that reads the offer from the
database and presents it. On such a page, a user can both read the most recent offer received and
construct a counteroffer. This case shows that the page-level construct offer activity can be
decomposed into the minuscule actions of read offer and write offer, and the component for offer
construction page should contain the offer display and the offer construction form sub-components.

By modeling the page-level activity and making the page-level component as an atomic unit of the
protocol, the framework leaves the detailed composition of the page as the task of component
developers. There are advantages in doing so. First, modeling detailed actions composing each page
can be left out of the scope when designing e-negotiation protocol. Therefore, the protocol designer

INR 05/03 7

can focus on high level coordination among page-level activities and components. Second, the features
on individual pages can be upgraded or changed without changing defined e-negotiation protocol
using them. Third, component designers can have more flexibility in designing and implementing
components without deep knowledge and concern about the e-negotiation protocol.

3.2 Constructs and model

As explained in the previous section, we view the e-negotiation protocol as a software protocol and a
triple of activity-page-component (i.e. the atomic units of activity and component are at the page-
level) as the basic concept in e-negotiation protocols. More formally, we define components as
follows.

Definition 1. Component cj, (j ∈ J, J – set of component indices) is the software module associated
with composing a page that supports activity of the user on a page.

As can be seen in the definition of the component, we are not concerned here with such issues as
software decomposition for the purpose of its reusability, and the specification of separable entities
such as objects. Instead, the e-negotiation protocol in our perspective is based on the natural and
intuitive unit of activity and component in web-based applications – the page.

Although there is no one process model that fits every negotiation, negotiations generally progress in
phases. Gulliver (1979) proposed a model of negotiation composed of eight phases which Kersten
(1997) suggested to reduce to the following five phases: (1) planning, (2) agenda setting and exploring
the field, (3) exchanging offers and arguments, (4) reaching agreement, and (5) concluding the
negotiation. In negotiations, of course, one phase is often revisited from a later phase. For executable
e-negotiation protocols, these phases should be divided into smaller entities we call activities. For
example, the planning phase includes activities such as gathering information, choosing potential
negotiation partner, designing strategies, and others.

The phase models suggest that activities can be clustered naturally. Consider for example, the offer
exchange phase. When a user makes an offer, he may need to read the transcript of the previous offers
in order to refresh his memory. In order to support this, when the user is reading the transcript page
(i.e. the component for displaying the transcript page is invoked), the component for the write_offer
page should be accessible, so that after the user reviewed the transcript he can return to the write_offer
page. In the offer exchange phase, it is also natural to allow the read_offer page if there is a received
offer. These allowed activities in the offer exchange phase are very different from earlier phases (e.g.,
setting the agenda) or later phases (e.g., after reaching an agreement)

To account for the possibility of grouping related negotiation activities, we introduce the concept of a
sequence which allows clustering components for those activities together.

Definition 2. Sequence σi = {cj , j ∈ Ji)}, (where i ∈ I; I is the set of sequence indices) is a set of
interrelated components which together determine all possible activities that can be undertaken in a
given negotiation situation.

The case depicted in Figure 2 gives one possible example. By clustering components into a sequence,
a component becomes accessible whenever one of the other components in the same sequence is
invoked and being executed. By clustering components, the protocol need not be concerned with
ordering every component. Instead, as shown in Figure 2, the protocol generally tries to operate on
sequences. It executes only one component from the sequence and only one component in the
sequence has to report the success or failure of the sequence execution. Other components in the
sequence report only failure; this case is indicated in Figure 2. Alternatively, they may report failure to

INR 05/03 8

one selected component in the sequence, which, however, has to have a capability to redirect the
execution flow.

Figure 2. Protocol, sequences, and components

Because the same component (or page) may be required and used at different steps of the negotiation,
a component should be allowed to use in more than one sequence.

Relationship 1. Every sequence has at least one component, that is, min |σi|=1, i∈I. It is possible that
one component belongs to more than one sequence, that is, cj∈σi and cj∈σk, where j∈J; i, k∈I; i ≠ k.

The e-negotiation protocol also needs to control routing from one sequence to another. Possible moves
among sequences are described by directed links between sequences, called exit link. These links
indicate the possible sequences a user can move when the user is in a specific sequence. From the
web-based system perspective, on a page, the exit link should show up as a link in addition to the links
that make other components in the sequence accessible.

Definition 3. Exit link ρij: σi → σj (i, j∈I), is a binary relation between two sequences σi and σj,
indicating a user can move from σi to σj.

Examining many patterns in the protocols, we found that a user should have option to move to more
than one sequence. Also, a sequence that does not have any exit link should be allowed because such
dead-end sequences are useful for modeling the final steps of the negotiation. We thus distinguish
three types of sequences:

1. One sequence that determines the beginning of the negotiation: σi, (i∈I1; | I1| = 1; I1 ⊂ I). There
can be only one such sequence so that the negotiation starting point is deterministic;

2. Sequences which lead to the end of the negotiation: σi, (i∈I2; I2 ⊂ I); which can be agreement or
disagreement, termination imposed by one side, or some other final point; and

3. Sequences which are in-between the beginning sequences and ending sequences: σi, (i∈I3; I3 ⊂ I).

Note that there are no other types of sequences than the beginning, in-between and ending, that is,

I1∪ I2 ∪ I3 = I and I1 ∩ I2 = ∅; I1 ∩ I3 = ∅; I2 ∩ I3 = ∅.

Considering a directed graph G(V,E) where the vertex set V={σi} and edge set E={ρij}, there is a
following relationship between sequences and exit links.

INR 05/03 9

Relationship 2. The relationship between sequences and exit links has the following two properties:

• in-degree of any σi, (i∈I), i.e. the number of exit links coming into σi, is greater than 0 except for
the sequence σj, (j∈I1);

• out-degree of any σi, (i∈I), i.e. the number of exit links coming out of σi, is greater than 0 except
for the sequences σk, (k∈I2).

In other words, a sequence may have zero, one, or many exit links.

Modeling e-negotiation protocols by sequences and components require consideration on the roles of
the components. For example, in a sequence, there is a component that should be invoked when the
user first enters the sequence. While the components should be accessible from any component in the
same sequence in general, there could be some components accessible only after certain conditions are
met. We describe these roles by introducing states of a sequence. Components in a sequence are
classified into initial, mandatory, optional, and hidden optional states depending on their roles as
follows.

Definition 4. Initial, mandatory, optional, and hidden optional states are defined as follows:

• Initial state e(σi): A component which a user is forwarded to when entering a sequence is the
initial state of the sequence.

• Mandatory state m(σi): A component which the user has to enter in order to exit to another
sequence is the mandatory state of the sequence.

• Optional states O(σi): A set of components accessible to the user is optional states of the sequence.

• Hidden optional states H(σi): A set of components not accessible to the user until some conditions
are met is hidden optional states of the sequence.

The needs for initial states and optional states are clear. When there are many components in a
sequence, the component to be invoked when a user first enters a sequence should be specified. Also,
the reason for having optional states are evident – components that can be visited from any other
component from the sequence – from the reason to cluster components into a sequence. Because a user
should access the initial state, the initial state must be an optional state.

After trying to model different types of protocols by components and sequences, we found in general
there is a component that should be invoked before leaving a sequence. For example, it is desirable to
allow moving from the exchange_offer sequence to the agreement sequence only when the read_offer
component is being executed, because this will ensure that the user knows which offer he agrees.
Mandatory state of a sequence models such a component that should be visited before leaving a
sequence. The mandatory state may not be an optional state because sometimes it is desirable not to
allow the user to leave the sequence until some conditions are satisfied. Modeling this will be
explained later.

We made a design choice of allowing one mandatory state in a sequence, because by doing so the
system can consistently apply rules of displaying all exit links at a mandatory state, without
considering which links to display on which mandatory state. This rule of the unique mandatory state
affects the granularity of the sequences in an e-negotiation protocol. After trials of modeling e-
negotiation protocols, we found it leads to a reasonable level of granularity.

INR 05/03 10

A sequence has one initial state and one mandatory state. Because the minimum number of
components in a sequence is one, the initial and mandatory states can be the same component. The
following statement summarizes the relationships between sequences and states.

Relationship 3. The relationship between sequences and states is given by

e(σi) ∈ O(σi) and m(σi) ∈ O(σi) ∨ H(σi).

Figure 3 visually describes the relationship between components, sequences, exit links, and states.

Figure 3. An example of six sequences (A,B,C,D,E,F)

The sequence-state-exitlink model specifies the change of permissible activities through controlling
component from the single party’s perspective. However, negotiation is an interactive decision making
and communication process where the activities to perform depend on the activity of the counterpart as
well as the user. For example, when the counterpart sends an offer, the user should be forwarded to
read_offer page. Depending on information received from the counter-part, the set of allowed
activities modeled by the sequence may change too. For example, when the counterpart agrees to the
most recently sent offer, both the user and counterpart should be forwarded to the agreement phase. In
order to support these interpersonal activities, e-negotiation protocol should also specify how to adjust
component configuration in response to information arrived from the counterpart.

First, we consider sending information to the counter part, which ignites the adjustment of component
configuration of the counterpart. We call this intervening.

Definition 5. Intervening is to send information to the counterpart and change the status of the
counterpart’s system.

E-negotiation protocols should consider how to handle intervening or the intervening rules. Well
defining how to handle intervening (i.e. intervening rules) is critical in the e-negotiation protocol
because intervening is a key activity in negotiations. Intervening rules are the function of information
type received. Common information types found in most negotiations are offer, message, agreement,
and termination.

Definition 6. Intervening rules R change the system through executing, enabling, or invoking
components in response to the received information type τ. In other words, intervening rules define the
way to change the current activity and/or allowed activities when a specific type of information is
received.

INR 05/03 11

We find intervening can be started by executing a component in the sequence (e.g. by sending offer or
message) or by exiting to a different sequence linked through an exit link (e.g. by moving to
agreement or termination sequence). When the execution of a component ci or exit link ρij starts
intervening by sending information type τ, we call ci or ρij is associated with τ. However, not all the
components and exit links are associated with an information type because there are also many
activities in negotiation that do not affect the status of the counterpart. (e.g. viewing history). It should
be also noted that invoking and execution should be discriminated. For example, invoking the send
offer component (and thus displaying the send offer page) does not intervene the counterpart because
displaying does not sends an offer, while executing the send offer component does cause intervening
by sending the offer.

Relationship 4. If the execution of the component or exit link sends a specific type of information to
the counterpart, the component or exit link is associated with the information type.

It is important to consider intervening rules based on the type of received information. This received
party’s perspective on intervening rules makes the ENS more interoperable and even enables the ENS
to interact with other ENS’s that do not follow the protocol model, because it does not require change
in the counterpart’s system and by having an interpreter or adapter translating received information
into the type of information defined in the intervening rule, the ENS can make proper changes in
component configuration in response to the message sent by the counterpart’s system.

After trials of modeling different protocols, we identify three types intervening rules described below
are most commonly required.

Proposition 1. The three types of intervening rules are most commonly used in e-negotiation protocols:

1. Activate hidden optional states in sequence into optional states RA: τ → (cj, σi): when received the
information type τ, add cj to O(σi) by activating hidden optional states.

2. Update initial state of sequence RU: τ → (cj, σi): when received the information type τ, set e(σi) as
cj.

3. Forward a user to a specific sequence RF: τ → (σi ,σj): when received the information type τ, the
user is forwarded from σi to σj.

Activation of hidden optional states allows changing a component from inaccessible from accessible.
Update of initial state as well as activation of hidden optional states indicates the mapping between
states and components are dynamic and change due to information exchange. Forwarding to a
sequence indicates the system may force the user to leave a sequence although the user is not at the
mandatory state of the sequence.

For an example of activating a hidden optional state, consider the user receiving an offer from the
counterpart for the first time. Allowing the read_offer activity when there is no offer, does not make
sense. It is especially so when the accept_offer activity is allowed on the read_offer activity, because
this will lead to the situation where the user agrees with the offer that is not even arrived. In order to
prevent this non-sense, the read_offer activity should be allowed only if there is at least one offer
received. This can be modeled by the intervening rule activating the read_offer component from the
hidden optional state into the optional state when the information type offer is received.

For an example of updating the initial state, consider a user received an offer before reaching the
sequence modeling offer exchange activities. When he reaches the exchange offer sequence, he should
be forwarded to the read_offer page, because there is an offer. On the other hand, it does not make

INR 05/03 12

sense to forward him to the read offer page when he did not receive an offer. If there is no offer,
displaying the send_offer page makes more sense. This can be modeled by the intervening rule
updating the initial state of the exchange offer sequence from the send offer to the read_offer
component when the information type offer is received.

For an example of forwarding to a sequence, suppose the counterpart agreed with the last offer sent by
a user. The user should be forwarded to the agreement sequence from the exchange offer sequence.
This can be modeled by the intervening rule forwarding the user to the agreement sequence from the
exchange_offer sequence when the information type agreement is received.

By combining the rule of updating the initial state and forwarding the sequence, it is possible to
forward a user to a specific state in a specific sequence. For example, consider the user is in the
exchange offer sequence and the counterpart sends an offer. The user should be forwarded to the read
offer page if he is not. This can be modeled by the intervening rule updating the initial state of the
exchange offer sequence to the read_offer component and another intervening rule forwarding the user
to exchange_offer sequence.

Using the constructs and models defined so far, we define e-negotiation protocol as a set of
components, sequences, states, exit links, and intervening rules. In other words, e-negotiation protocol
is a set of rules controlling components to be used, how they are clustered (i.e. sequence), how those
clusters are related (i.e. exit links), how components are invoked (i.e. states), and dynamic change of
the description in response to receiving information from the counterpart (i.e. intervening rules).

Definition 7. E-negotiation protocol P is composed of sequences, exit links, and intervening rules:

P = {σ, ρ, R },

where σ={σi} and ρ={ρjk}

Since the e-negotiation protocol specifies both intrapersonal and interpersonal activities, different e-
protocols may be adopted by the negotiating parties. In order to do so, the protocols adopted by the
parties should be compatible. Well designed e-negotiation protocols are compatible with many other e-
negotiation protocols including themselves.

In the run time environment, the designed e-negotiation protocol should be instantiated. In a protocol
instance, the initial, mandatory, and optional states of sequences change while executing the
negotiation according to the intervening rules. In other words, the sequences, states, and exit links
should change in run-time in response to the type of information received.

3.3 Patterns and methods

In this section, we illustrate the common patterns of e-negotiation protocols and how to implement
these patterns using the constructs and models presented in the previous section. As stated earlier, the
proposed protocol model considers the level of details that can be deployed as a web application. The
patterns presented in this section are patterns of user’s moves among pages and their effects on the
counterpart’s moves.

As shown in Table 1, we classify some common patterns based on whether user’s activity involves
interpersonal activities or not. It should be noted that the patterns illustrated in the table are not
exhaustive and the described methods are not unique ways of implementing the patterns using the
constructs and models.

INR 05/03 13

Table 1 Patterns, examples, and methods of implementation

Name Description Example Implementation

User-ENS interaction patterns involving only intrapersonal activities
Free move A user is allowed

to move among a
set of activities

When the user exchanges
offers, he should be able to
do the following five
activities: {send offer, read
offer, send message, read
message, view history}
without affecting other
accessible activities.

Set the components for these activities
cSO, cRO, cSM, cRM, cVH as optional states of
exchange offer sequence σEX, i.e., set
O(σEX) = { cSO, cRO, cSM, cRM, cVH }.

Sequential
move

A user performs
activities step by
step

In the hybrid conjoint
method for eliciting
preferences, the user should
first rate importance of issues
being negotiated, then rate
available options in each
issue, and finally rate
packages (i.e.
alternatives)(Kersten and
Noronha 1999). In other
words, at the page for rating
issues, the user should go to
the page for rating options
next. At the page for rating
options, the user should go to
the page for rating packages

Model sequences rate_issues(σRI),
rate_options(σRO), and rate_packages(σRP)
as individual sequences and place exit
points ρRI-RO directed from σRI to σRO, and
 ρRO-RP from σRO to σRP so that activities
included in σRI, σRO, σRP can be executed
sequentially

An activity
allowed only
at a specific
component

A user can move
to a different
page only at a
specific page

A party can click agree only
at the page that displays the
most recent offer from the
counterpart in order to avoid
confusion.

Model two separate sequences
exchange_offer(σEX) and agreement (σA)
and set up an exit link from σEX to σA (i.e.
ρEX-A). Set the read_offer component cRO
as the mandatory state of σEX (i.e. m(σEX)
= cRO).

User-ENS interaction patterns involving interpersonal activities
Exchanging
offers/
messages until
reaching an
agreement or
end

Negotiators
interact with each
other until
reaching an
agreement or an
end. When one
party sends
information, the
other party is
forced to read it.
If one of them
wants to agree or
terminate, they
are forwarded to
a different stage.

User A and B exchange
offers as the following
sequence. A sends an offer
→ B reads the offer → B
sends a counter offer (i.e.
reject A’s offer) → A reads
the offer→ … → A or B
accepts the received offer →
Both A and B are forwarded
to the read_agreement page

Model two sequences σEX and σA When
the send_offer component cSO∈ O(σEX) is
executed the information type offer (iO) is
sent to the counterpart. iO is associated
with the intervening rule updating the
initial state of the exchange_offer
sequence e(σEX) into the read_offer
component cRO and forwarding to the
exchange_offer sequence. Executing the
exit link ρEX-A from σEX to σA sends the
information type agreement iA. iA is
associated with the intervening rule
forwarding to the agreement sequence
(σA).

INR 05/03 14

Name Description Example Implementation
Addition of an
allowed
activity

An action is
allowed only
after the
counterpart sends
information of a
specific type.

The read_offer activity
should not be available when
there is no offer received. It
should be activated when the
first offer from the
counterpart is arrived.

Model the read offer component cRO as a
hidden optional state of σEX (i.e. cRO
∈ H(σEX)). Set an intervening rule
activating cRO as an optional state of σEX
when the information type offer (iO) is
received.

Change of the
steps to follow

The steps to be
followed by a
user changes if
the counterpart
sends
information.

After finishing the steps for
preparing the negotiation, it
is desirable to display the
user send_offer page when
there is no offer arrived from
the counterpart. However, if
the counterpart sent an offer,
displaying the read_offer
page is more desirable.

Set the send_offer component cSO as the
initial state of the exchange_offer
sequence σEX (i.e. e(σEX) = cSO). Add an
intervening rule that updates e(σEX) from
cSO to cRO if the information type offer
(iO)is received.

Proposal and
wait

A negotiator
proposes
something. If the
counter part
accepts the
proposal both
parties move to
another step X. If
it rejects the
proposal they
move to another
step Y.

A user proposes to add a
negotiation issue then wait
for reply. The counterpart is
forwarded to the
read_proposal
_for_adding_an_issue page
and accepts the proposal.
Both parties move to the
page showing that the
proposal is mutually agreed.

Model sequences for exchange offer(σΕX),
proposal(σPR), and
proposal_agreement(σAP). Set an exit link
from σEX to σPR (i.e. ρEX-PR) so that the
user can enter the sequence σPR from σΕX.
The initial state of σPR, e(σPR), is the send
proposal component cSP and the
mandatory state of σPR, m(σPR), is the
read_proposal component cRP. Set
H(σPR)= cRP. Associate cSP with the
information type proposal (iP). Set the
intervening rule activating cRP in σPR,
updating e(σPR) to cRP, and forwarding to
the sequence σPR when receiving the
information type proposal (iP). Set an exit
link between σPR and σAP (ρPR-AP) which
is associated with the information type
accept_proposal (iAP). Set an intervening
rule that forwards from σPR to σAP when
received iAP.

3.4 Representation of e-negotiation protocols

Software protocol can be viewed as a description of how to integrate components to build a system.
Haines et al. (2004) propose component integration through a data infrastructure, such as a database, a
blackboard, a message bus, or an object request broker. This data-level component integration allows
decoupling of the control of the component execution from communication. Adopting this data-level
integration approach, we see the e-negotiation protocol as a software protocol stored in the database,
which controls page-level components.

The model for e-negotiation protocol presented in Section 3.2 can be represented by tables and
consequently, stored in a relational database. In order to describe the e-negotiation protocol, first we
need tables representing the initial setting of sequences, initial, mandatory, optional, and hidden
optional states of these sequences, and exit links. Also, to describe the invocation of intervening, for
each optional state and exit point, associated the type of information should be specified if the
execution of it causes intervening. In addition, three tables for describing three kinds of intervening
rules are required: (1) activating hidden optional states, (2) updating initial states, and (3) forwarding
to a sequence. All of these intervening rule tables should have the type of received information as the

INR 05/03 15

condition for applying the rule. The hidden optional state activation table should specify the state and
sequence to activate, the initial state update table should describe the sequence and the component to
become its initial state, and the sequence forwarding table should define the origin (i.e. from sequence)
and the destination (i.e. to sequence) to forward the user.

For the operationalization or instantiation of the e-negotiation protocol, the tables for recording the
run-time protocol are also necessary because the initial setting of sequences and components changes
as negotiation being executed according to the intervening rules. Therefore, for instantiation, the run-
time tables for sequences (their states) and exit links are necessary as well as tables storing the current
status of the negotiation instance such as the current sequence, user and counter-part information, etc.

4. Examples

In this section, we validate proposed framework for e-negotiation protocol by illustrating how two
previously developed ENS’s, SimpleNS and Inspire, can be modeled by constructs and models
presented in the previous sections.

SimpleNS is a communication and process support oriented ENS which does not offer analytical
support to the negotiators. It has been developed for teaching and comparative studies on the use and
effectiveness of different ENS’s (http://mis.concordia.ca/SimpleNS). It provides a virtual negotiation
table which allows its users to exchange offers and messages. This system displays the negotiation
case and other information required to conduct the negotiation, presents a form in which users write
messages and offers, and shows the negotiation history in which all messages and offers are displayed
in one table with the time they were made. It has been used in teaching at the University of Ottawa,
Concordia University, Vienna University, Austria and National Sun-Yat Sen University, and Taiwan.

The table-based representation of the underlying e-negotiation protocol model emulating the SimpleNS
system is presented in Appendix 1. Figure 4 shows the screen shot of the SimpleNS system
implemention on the Invite platform, an e-negotiation platform running the protocol defined by the
constructs and models presented in this paper. The screen is the page for constructing an offer and/or
message. The user is in the exchange_offer sequence, where the read_public_case, read_private_case,
construct_offer_and_message, and view_history components are optional states. The main content of
the page in Figure 4, is the result of invoking the send_offer_and_message component, and the links
on the right column indicate accessible components (i.e. optional states of the current sequence) from
the current page, send_offer_and _message.

INR 05/03 16

Figure 4 Screen shot of the SimpleNS system implemented on the Invite platform

Inspire is a bilateral ENS developed by the InterNeg research group based on decision and negotiation
analysis theory (Kersten and Noronha 1999). Its main purpose is to investigate cross-cultural
negotiations and to provide a teaching tool in negotiation courses. Inspire views a negotiation as a
process that occurs in a particular context. The system uses a simplified 3-stage process model: pre-
negotiation analysis, negotiation, and post-settlement analysis.

In the pre-negotiation phase, Inspire provides tools for preference elicitation based on the additive
utility model. The preference elicitation is performed in three steps. First, the user specifies his
preferences over pre-defined issues by distributing 100 points among issues. Once the user assigns
preference over the issues, he proceeds to assign scores on the options in each issue. The next step of
the pre-negotiation is generation of packages followed by the calculation of ratings for these packages
and by the user’s verification of these ratings. If the user changes the displayed rating values the least-
square procedure propagates these changes to all remaining ratings.

The negotiation phase involves exchange of messages and offers, evaluation of offers, and the review
of the progress of the negotiation. In support of the offer exchange activity, the system presents a drop
down menu for each issue, so that user can select for each issue only one option. Once an offer has
been constructed, the rating is displayed based on the rating function, constructed from user’s
preferences earlier.

In the post-settlement phase, the system first determines the rating values of the achieved compromise
for both users. Then it checks whether the compromise is a Pareto efficient outcome. If not, the system
searches for up to five efficient packages and display them to the user so that they can re-negotiate and
improve inefficient compromises.

A negotiation in the Inspire system is terminated when (1) an agreement has reached among both
parties, (2) one party terminates in any phase during the negotiation, or (3) the period allocated for talk
is expired.

The e-negotiation protocol model for the Inspire system deployable on the Invite platform can be
found in Appendix 2. Figure 5 shows the screen shot of the Inspire system implemented using the
Invite platform. Like in SimpleNS, links on the right column are generated by the optional states
defined in the current sequence (i.e. exchange_offer).

INR 05/03 17

Figure 5 Screen shot (the offer construction page) of the Inspire system implemented on the
Invite platform

Note that some components (e.g. read_public_case, read_private_case) are reused in both SimpleNS
and Inspire protocols. A component used in the e-negotiation protocol can be reused in another
protocol as far as it provides necessary functionality and satisfies the intent of both protocols.

5. Conclusion

Context dependency is one of the key issues that hinder development of general purpose ENS and
adoption of ENS in practice. In this paper, we propose to adopt the component-oriented software
protocol approach to ENS in order to mitigate the context dependency issue. We present a framework
providing a detailed methodology of developing ENS following this component-oriented software
protocol approach. The core of the framework is the e-negotiation protocol model. The e-negotiation
protocol controls interactions between users and ENS by integrating the page-level components,
executing them, routing the user to a specific page, and generating links to relevant activities. The
protocol also specifies the rules on how to handle information received from the counterpart.

The framework tries to solve the dilemma of context independence of the system and context-aware
support to the user by allowing design of e-negotiation protocols that provide certain degree of
freedom in activities and by letting users design new or modify existing e-negotiation protocols. In
addition, by reusing software components, the framework improves efficiency in ENS development.

In the database arena, a breakthrough improvement in productivity was achieved by separating the
conceptual data model, usually represented by the ER-diagram, from physical implementation of the
database. In the workflow arena, similar productivity enhancement was achieved by separating the
conceptual process model from the physical implementation layer. Our framework is on the similar
path, in the sense that the conceptual e-negotiation protocol model provides enough details for
implementation but is separated from the implementation of ENS.

The separation of the conceptual model from physical implementation of database and workflow was
possible only because it is supported by the lower level infrastructure systems, DBMS and WfMS,
which bridge them and execute the conceptual model. In order to support the e-negotiation protocol
model, we developed a generic purpose e-negotiation platform called Invite platform which can run e-

INR 05/03 18

negotiation protocols conforming to the proposed framework.

The two examples given in this paper are bilateral negotiations. We also found that multi-bilateral
negotiations or multi-attribute auctions are also supported by the framework, by simply allowing
multiple and selective intervening. Although our work focuses on negotiations, the contribution is not
limited to negotiation systems only. It can give a useful model for developing other general web-based
applications supporting collaborative and interactive group decision making processes. We will
continue to test and refine our framework for various multi-lateral negotiations and collaborative
group decision making processes.

Table-based representation of e-negotiation protocols are database and development friendly, but not
very user friendly. One of the important future work to be done is to develop tools for visual
representation and modeling of e-negotiation protocols. We are studying methods to map visual
representation into the table-based representation. GUI tools for visual design of e-negotiation
protocols will be implemented based on the method.

We will also perform a comparative study of workflow theory and the proposed framework for e-
negotiation protocols. Recently workflow arena has been focusing on expressive power of modeling
tools and methodologies for validating defined workflow model. We will approach the e-negotiation
protocols from the similar perspective. Desirable properties of the framework and e-negotiation
protocols will be identified, and methodologies to check if the defined protocols satisfy the properties
will be studied. Text (single spacing)

References
Aalst, W. M. P. v. d. (2005). Workflow patterns,

http://is.tm.tue.nl/research/patterns/documentation.htm
Aalst, W. M. P. v. d. and A. H. M. t. Hofstede (2005). "YAWL: Yet Another Workflow Language."

Information Systems 30(4): 245-275.
Bassil, S., M. Benyoucef, R. Keller and P. Kropf (2002). Addressing dynamism in e-Negotiations by

workflow management systems. Proceedings of the 13th International Workshop on Database and
Expert Systems Applications (DEXA2002), Aix-en-Provence, France.

Benyoucef, M. and R. Keller (2001). "Combined negotiation in e-commerce: concepts and
architecture." Electronic Commerce Research 1: 277-299.

Berners-Lee, T. and R. Cailliau (1990). World Wide Web: Proposal for a HyperText Project,
http://www.w3.org/Proposal.html.

Bichler, M., Kersten, G., Strecker, S. (2003). "Toward a structured design of electronic negotiations."
Group Decision and Negotiation 12(4): 311-335.

BPEL4WS (2003). version 1.1 standard specification, http://www-
128.ibm.com/developerworks/library/specification/ws-bpel/.

Foroughi, A. (1995). "A Survey of the Use computer Support for negotiation." Journal of Applied
Business Research.

Gulliver, P. H. (1979). Disputes and Negotiations: A Cross-Cultural Perspective. Orlando, FL,
Academic Press.

Haines, G., D. Carney and J. Foreman (2004). Component-Based Software Development / COTS
Integration. Software Technology Roadmap. C. M. S. E. Institute,
http://www.sei.cmu.edu/str/descriptions/cbsd.html.

Holsapple, C. W., H. Lai and A. B. Whinston (1998). "A Formal Basis for Negotiation Support
System." Group Decision and Negotiation 7(3): 203-227.

Jelassi, M. T. and A. Foroughi (1989). "Negotiation Support Systems: An Overview of Design Issues
and Existing Software." Decision Support Systems 5(2): 167-181.

Kersten, G. E. (1997). Support for Group Decisions and Negotiations. An Overview. Multicriteria

http://is.tm.tue.nl/research/patterns/documentation.htm
http://www.w3.org/Proposal.html
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/
http://www.sei.cmu.edu/str/descriptions/cbsd.html

INR 05/03 19

Analysis. J. Climaco. Heilderberg, Springer Verlag: 332-346.
Kersten, G. E. (2004). "E-negotiation systems: interaction of people and technologies to resolve

conflicts." The Magnus Journal of Management 1(3): 71-96.
Kersten, G. E. and H. Lai (2005). "Satisfiability and completeness of protocols for electronic

negotiations." European Journal of Operational Research, To appear.
Kersten, G. E. and S. J. Noronha (1999). "WWW-based Negotiation Support: Design, Implementation,

and Use." Decision Support Systems 25: 135-154.
Kim, J. B. and A. Segev (2003). A Framework for Dynamic eBusiness Negotiation Processes. IEEE

Conference on e-Commerce, Newport Beach, California.
Kim, J. B. and A. Segev (2005). "A Web Services-enabled marketplace architecture for negotiation

process management." Decision Support Systems 40(1): 71-87.
Lim, L. and I. Benbasat (1992). "A Theoretical Perspective of Negotiation Support Systems." Journal

of Management Information Systems 9(3): 27-44.
March, S. and G. Smith (1995). "Design and Natural Science Research on Information Technology."

Decision Support Systems 15: 251 - 266.
Neumann, D., M. Benyoucef, S. Bassil and J. Vachon (2003). "Applying the Montreal taxonomy to

State of the Art E-Negotiation Systems." Group Decision and Negotiation 12(4): 287-310.
Stohr, E. and J. L. Zhao (2001). "Workflow Automation: Overview and Research Issues." Information

Systems Frontiers 3(3).
Vaishnavi, V. and B. Kuechler (2005). Design Research in Information Systems. ISWorld,

http://www.isworld.org/Researchdesign/drisISworld.htm.
Vetschera, R., G. E. Kersten and S. Koszegi (2003). User assessment of Interneg-based negotiation

support systems: an exploratory study. Research Paper INR 04/03. I. R. Group,
http://interneg.concordia.ca/interneg/research/papers/index.html.

WfMC (2005). XPDL, http://www.wfmc.org/standards/XPDL.htm.
Wikipedia Protocol (object-oriented programming). GNU,

http://en.wikipedia.org/wiki/Protocol_%28object-oriented_programming%29. 2005.
Wohed, P., W. M. P. v. d. Aalst, M. Dumas and A. H. M. t. Hofstede (2002). Pattern-based analysis of

BPEL4WS. QUT Technical Report FIT-TR-2002-04. Q. U. o. Technology,
http://is.tm.tue.nl/research/patterns/download/qut_bpel_rep.pdf.

http://www.isworld.org/Researchdesign/drisISworld.htm
http://interneg.concordia.ca/interneg/research/papers/index.html
http://www.wfmc.org/standards/XPDL.htm
http://en.wikipedia.org/wiki/Protocol_%28object-oriented_programming%29
http://is.tm.tue.nl/research/patterns/download/qut_bpel_rep.pdf

INR 05/03 20

Appendix 1. SimpleNS protocol

SimpleNS protocol: initial sequences, states, and components

Sequence
Name

Initial State Mandatory State Optional States
(Associated Intervening
Information)

Exit Links to
(Associated Intervening
Information)

Start
Negotiation

Read Public
Case

Read Public Case Read Negotiation Details
Read Public Case

Read Private
Information

Read Private
Information

Read Private
Case

Read Private Case Read Negotiation Details
Read Public Case

Exchange Offer

Exchange
Offer

Construct Offer
and Message

Read Offer Read Public Case
Read Private Case
History
Construct Offer and Message
(Offer Message)
Read Offer and Message*

Agreement
(Agreement)

Agreement Read Agreement Read Agreement History
Read Agreement

Terminate Negotiation
(Termination)

Terminate
Negotiation

Terminate
Negotiation

Terminate
Negotiation

History

* Hidden optional state

SimpleNS protocol: intervening rules

Activating hidden optional states
Condition
(received information type)

Sequence to apply Hidden optional state to activate

Offer Message Exchange offer Read offer and message

Updating initial states
Condition
(received information type)

Sequence to apply Component to set as the initial
state

Offer Message Exchange offer Read offer and message

Forwarding to a sequence
Condition
(received information type)

Allowed origination
(from sequence)

Forwarding destination
(to sequence)

Offer Message Exchange offer Exchange offer
Agreement Exchange offer Agreement
Termination Any Termination

INR 05/03 21

Appendix 2. Inspire protocol
Inspire protocol: initial sequences, states, and components

Sequence name Initial state Mandatory state Optional states
(associated intervening
information)

Exit links to
(associated intervening
information)

Start Negotiation Read Public
Case

Read Public Case Read Negotiation Details
Read Public Case

Read Private Case

Read Private
Information

Read Private
Case

Read Private Case Read Negotiation Details
Read Public Case

Rate Issues

Rate Issues Rate Issue Rate Issue Read Public Case
Read Private Case
Rate Issue

Rate Options

Rate Options Rate Option Rate Option Read Public Case
Read Private Case
Rate Option

Rate Packages

Rate Packages Rate Package Rate Package Read Public Case
Read Private Case
Rate Package

Exchange Offer

Exchange Offer Construct Offer Read Offer Read Public Case
Read Private Case
Write Message (Message)
History
Construct Offer (Osffer)
Read Offer*

Read Message*

Agreement
(Agreement)
Rate Issues
Rate Packages

Agreement Read Agreement Read Agreement History
Read Agreement

Post-Settlement
Terminate Negotiation
(Termination)

Post-Settlement [Construct Post-
Settlement
Offer]

Read Post-
Settlement Offer

Read Public Case
Read Private Case
History
View Nego-Dance graph
[Construct Post-Settlement
Message (PS Message)]
[Construct Post-Settlement
Offer (PS Offer)]
Read Post-Settlement
Offer*

Read Post-Settlement
Message*

[Post-Settlement
Agreement
(PS Agreement)]

Post Settlement
Agreement

[Read Post-
Settlement
Agreement]

[Read Post-
Settlement
Agreement]

Read Post-Settlement
Agreement
View Nego-Dance graph
History

Terminate Negotiation
(Termination)

Terminate
Negotiation

Terminate
Negotiation

Terminate
Negotiation

History

* Hidden optional state

INR 05/03 22

Inspire protocol: intervening rules
Activating hidden optional states

Condition
(received information type)

Sequence to apply Hidden optional state to
activate

Offer Exchange offer Read offer
Message Exchange offer Read message
PSOffer Post settlement Read PS offer

PSMessage Post settlement Read PS message

Updating initial states

Condition
(received information type)

Sequence to apply Component to set as the
initial state

Offer Exchange offer Read offer
Message Exchange offer Read message
PSOffer Post settlement Read PS offer

PSMessage Post settlement Read PS message

Forwarding to a sequence

Condition
(received information type)

Allowed origination
(from sequence)

Forwarding destination
(to sequence)

Offer Exchange offer Exchange offer
Message Exchange offer Exchange offer

Agreement Exchange offer Agreement
Termination Any Termination

PSOffer Post settlement Post settlement
PSMessage Post settlement Post settlement

PSAgreement Post settlement Post settlement agreement

	Component-based Software Protocol Approach
	1. Introduction
	2. Literature review
	3. Framework for e-negotiation protocols
	3.1 Component-based systems and software protocol
	3.2 Constructs and model
	3.3 Patterns and methods
	3.4 Representation of e-negotiation protocols

	4. Examples
	5. Conclusion
	References
	 Appendix 1. SimpleNS protocol
	 Appendix 2. Inspire protocol

