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Abstract 
  
Most available methods for estimating parameters of multi-attribute utility models overlook presence 
of response error in the assessment phase. This paper is motivated by the fact that response error is 
present in all utility assessment procedures. Consequently, a suitable estimation method in this context 
should incorporate this fact, which is an intrinsic part of any assessment procedure. We propose a 
least-squares estimation method for estimating the relative weights of multi-attributes additive utility 
function. The method, which is based on decomposition assessment procedure, can accommodate 
presence of random error as well as systematic bias in assessment.  Simulation studies demonstrate 
that the proposed estimation procedure will lead to correct estimation of parameters in a variety of 
situations. The proposed procedure for incorporating response error is quite general and can be used as 
a framework for estimating parameters of other multi-attribute utility functions. 

                                                      
1 This research is supported by a grant from Social Sciences and Humanities Research Council of Canada INE 

Program. 
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1. Introduction 

Despite evidences against descriptive validity of expected utility (Kahneman and Tversky, 1979, Luce, 
1988), multi-attribute utility theory (Keeny and Raiffa 1976; Von Winterfeldt and Edwards, 1986; 
Keeny, 1992), remains the most powerful prescriptive method for analyzing decision problems 
involving multiple objectives, particularly for analysis of preferences under certainty (Dyer and Sarin, 
1979; Krantz, Luce, Suppes, and Teversky 1971; Miamoto, 1992).    

If x = (x1, x2, …, xn) is a vector of attributes which describes a possible outcome, the utility function 
U(x) describes a decision maker’s preference ranking of all possible outcomes. What characterizes 
multi-attribute utility function is the attempt to specify the form of U(x) in such a way as to elucidate 
the trade-offs among attributes. This is accomplished by adding to the basic set of axioms of von 
Neumann and Morgenstern (1947), some further assumptions about the decision maker’s preference 
structure. One such assumption is that of mutually utility independence for a discussion of which we 
refer to (Keeny and Raiffa 1976). Under this assumption U(x) may be written as 
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Where 0 ≤ uj(xj) ≤ 1,  K and W satisfy the constraint 
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Furthermore, K > -1 and 1 > Wj  > 0.  

When K → 0, it can be shown that U(x) in (1) tends to  
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 Equation (3) is labelled as the linear additive function and corresponds to a particular case of utility 
independence called value independence (Keeny, 1974). The functions uj(xj) are called univalued 
utility functions and Wj  represent the relative weights  reflecting contribution of each utility function 
to the overall utility function U(x) and they shall satisfy the constraint 
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Equation (3) is the most popular model used in practice and is commonly utilized in development of 
decision support systems (DSS).  In this study we focus our attention on application of this additive 
function as presented in (3). 

The assessment of the weights and individual utility functions can be either based on holistic or 
decomposition procedures. Both holistic and decomposition assessment methods for preference 
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assessment contain measurement error (Fischhoff, Slovic and Lichtenstein 1980). However, in most 
multi-attribute decision methods, presence of measurement errors in assessment procedure has been 
ignored. Laskey and Fischer (1987) contemplate this deterministic view and treatment of preference 
assessment to the fact that in Keeny and Raiffa (1976) expected utility theory, preferences are assumed 
to be deterministic and known with certainty. That is, the expected utility theory lacks an error theory. 
To overcome this problem, in practice, a variety of methods for checking consistency in preference 
assessment have been developed (e.g Keeny and Raiffa (1976) and Farquhar, 1984). 

Etezadi-Amoli and Ciampi (1983), motivated by the work of Barron and Person (1979), introduced a 
general approach for modeling measurement error, and provided the SEE (Simultaneous Estimation of 
Everything) procedure for estimating parameter of Keeny and Raiffa (1976) multi-attribute utility 
theory (MAUT) models. The SEE procedure is developed to estimate parameters of Keeny and Raifa 
linear or multiplicative models based on holistic assessment method. Laskey and Fischer (1987) 
explored the nature and extent of response error based on direct assessment. However, a 
mathematically rigorous but operationally simple and practical estimation method for parameter of 
MAUT based on decomposition assessment procedure has not been developed yet.   

In the following, we first provide a measurement model for assessment of weights in linear MAUT 
function. Then, in section three, we introduce an estimation procedure for assessment of relative 
weights of the linear MAUT function. The estimation procedure introduced here is based on the least-
square principles and assumes decomposition assessment procedure. In section four, a confidence 
interval for overall utility of multi-attribute outcomes is developed which is based on the assumption 
of known univalued utility functions. To evaluate performance of the proposed estimation method, in 
section five, we report results of some simulation studies. Finally, in section six, a discussion of the 
proposed method and its implication is provided. 

2. A measurement model for the assessed weights 

Using the classical measurement model (Lord and Novick 1974), taking a measurement i on a person 
results in a numerical value that we denote by yi.  This value (observed score) depends on a particular 
measurement situation, and is only one of the many possible values that may be obtained.  That is, the 
measurement yi, is conceived as a particular realization of a random variable Yi defined on the set of all 
possible values yi that might be observed.  The true score τi  of a person on a particular measurement i 
is fixed and defined as the expected value of the observed score. That is,  

ii YE≡τ   (5) 

where Yi is the random variable taking values yi.  Furthermore, we define the error of measurement as 
the amount by which any observed value deviates from its corresponding  true value.  

Ei = Yi - τi   (6) 

The random variable Yi is assdumed to be independent of one another. Consequently, Ei are 
independent of each other and 0=iEE . Thus, the callassical measurement model for a particular 
measurment i may be written as:  

Yi =  τi  + Ei. (7) 

To develop a measurement model for assessed values of weights Wj , because of the constrain (4), the 
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weights will not be independent of one another. Consequently, if we assess each weight separately and 
model the measurement error based on equation (6), due to the above dependency, the error of 
measurement from such a process cannot be assumed independent.  

To overcome this problem, instead of assessing weight of each attribute independently, we propose 
assessing the relative weight of each attribute with respect to the weight of one selected attribute, for 
example, Wn. We recognize that all assessments of relative weights (ratios), similar to any other 
measurements, are always subject to a response error. That is, the assessor cannot provide the true 
value of the relative weights γj = Wj/Wn.  

Since these relative weights are always positive, we may represent them as an exponential function. 
Consequently the observed relative weights rj (measured values),  may be modeled as: 

ln (rj) = ln (γj) + fj ; j = 1, …, n-1, (8) 

where rj = wj/wn are the assessed (observed) ratios and fj,,  j = 1, …, n-1, represent measurement errors 
and assumed to be normally distributed with equal variance.  That is, fj ~ N (0, σf

2) for all j.   

Equation (8) resembles the general measurement model presented in (7). However, to estimate the 
relative weights for an individual user, we require an estimate of the variance of errors which may be 
obtained by repeated measures of rj =  wj/wn. 

To obtain repeated measures, we propose to measure first the relative weights of each attribute with 
respect to the weight of the most important attribute using a variation of the swing method. Then we 
will repeat the assessment procedure by measuring the relative weights or importance of each attribute 
with respect to the weight of the least important attribute.   

The advantage of using the swing method is that it can provide directly measures of ratios. It is 
important to note that in using the swing method, one should not assess the relative weights without 
due consideration of the range of attributes involved in the model. (see e.g. Von Winterfeldt, 
Edwards,1986).  

Suppose the first set of assessments provides the relative weight of the attributes with respect to the 
most important attribute and suppose the most important attribute for the decision maker is xn.  

Let: 

ln (γj) = ln (Wj/Wn) = hj; j = 1, …, n-1.  (9) 

Then we may rewrite (8) as: 
ln (rj) = hj + fj ; j = 1, …, n-1.  (10) 

From (9) we obtain, 
Wj = Wn exp (hj) ; j = 1, …, n-1.  (11) 

From (4) and (11) we obtain, 
W1 + … + Wn-1 + Wn = Wn (exp (h1) + … + exp (hn-1) + 1) = 1, (12) 
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thus, 
Wn = 1/(exp (h1) + … + exp (hn-1) +1).  (13) 

Suppose the least important attribute among those under consideration is the attribute x1. Suppose 
further that we obtain a second set of measurement of the relative weights for all attributes with 
respect to x1.  Similarly to (8), we can write: 

ln (rj
’) = ln (γj

’) + fj’ ; j = 2, …, n. (14) 

where: rj
’ = wj/w1 is the assessed relative importance of attribute xj to x1, and γ’

j = Wj/W1 the 
corresponding true relative importance.  

To simplify the estimation procedure, we assume that dispersion of measurement errors for the two 
sets of assessments of relative weights are the same. That is, fj’ ~ N(0, σf

2) for all j.   

By dividing both the numerator and the denominator of γ’
j by Wn we obtain: 

γ’
j = (Wj/Wn) / (W1/Wn) = γj/γ1.  (15) 

or 

ln (γ’
j) = ln (γj) - ln (γ1).  (16)  

Substituting (16) into equation (14) yields 
ln (r’

j) = hj - h1 + fj’ : j = 2, …, n.  (17) 

3. Estimation procedure  
In the followings a least-squares procedure for estimation of parameters of two different models will be 
presented.  

3.1 Least squares procedure without intercept 

The two sets of assessments obtained from the above procedures, i.e. (8) and (17), may be considered 
together in the following multiple regression model. 

y = Dh + e. (18) 

Where y is a 2(n-1) column vector containing log of the assessed values of the two ratios rj and rj
’, 

y’ = [ln (r1), ln (r2), …, ln (rn-1), ln (r2
’), ln (r3

’), …, ln (rn
’) ].  

D is a 2(n-1)×(n-1) model matrix with constants equal to 0, 1 or -1 as demonstrated below. Note that 
the first n-1 rows of this matrix correspond to (8) and the remaining n-1 rows correspond to (17). 
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 ⎡ 1 0 0 ... 0 0 ⎤ 

 ⎢ 0 1 0 ... 0 0 ⎥ 

 ⎢ . . . ... . . ⎥ 

 ⎢ 0 0 0 ... 0 1 ⎥ 

D =  ⎢ -1 1 0 ... 0 0 ⎥ 

 ⎢ -1 0 1 ... 0 0 ⎥ 

 ⎢ . . . ... . . ⎥ 

 ⎢ -1 0 0 ... 0 1 ⎥ 

 ⎣ -1 0 0 ... 0 0 ⎦ 

 

The n-1 dimensional column vector h contains parameters of the model, which are logarithm of the 
relative weights or ratios.  

h’ = [h1, h2, …, hn-1], 

and e is the random vector of error terms corresponding to the values of fj and dj. 

e’ = [f1, f2, …, fn-1, f2
’, …, fn

’]. 

With the above arrangement, one may simply use the ordinary least squares procedure to estimate 
parameters of the model.   

3.2 Generalization 

We can generalize this regression model by adding a constant term (intercept), to each of the two 
measurement models presented in (8) and (17).  

ln (rj) = c1 + hj + fj ; j = 1, …, n-1,  (19) 

ln (r’
j) = c2 + hj - h1 + f’j; j = 2, …, n.  (20) 

By adding these constant terms c1 and c2 to the above equations we will be able to incorporate bias in 
the assessment process. That is, if an assessor, in her/his first or second sets of assessments 
systematically over or under estimates the relative weights of attributes under consideration, the model 
would be able to accommodate such biases in assessments and correct them accordingly. These 
constant terms can be easily incorporated into the regression model (18) by adding two indicator 
(dummy) variables to matrix D; where the first indicator represents the n-1 assessments corresponding 
to the first set of assessments and the second one to the remaining n-1 assessments.   

Note that by adding these constant terms in the model we will loose 2 degrees of freedom.  Thus, in 
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practice, to implement these corrections, the decision problem should involve at least 4 attributes. 
When the problem involves 4 attributes, we will have six measures and 5 parameters to estimate, 3 
corresponding to estimation of hj, and 2 parameters for the constant terms. Thus, we will have one 
degree of freedom left for the residuals. In special cases, when the bias in assessment of relative 
weights for the two procedures can be assumed to be equal, we will simply add a column of 1 to 
matrix D to account for this bias and gain an extra degree of freedom for the residuals. 

4. Confidence interval for multi-attribute outcomes 

Since  Wj  = Wnγj, from Eq. (3) the overall utility of a multi-attribute outcome x may be written as 

)]()([)()(
1

11
nnjj

n

j
jnjj

n

j
j xuxuWxuWxU +== ∑∑

−

==

γ  (21) 

Similarly we may write 

=−=− ∑∑
==

)()(1
11

jj

n

j
j

n

j
j xuWWxU  

            (22)  )}(1)](1[{
1

1
nnjj

n

j
jn xuxuW −+−∑

−

=

γ

Consequently, from (21) and (22) we have 
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Denote U = U(x) and uj = uj(xj) and let  be the estimators of  derived from (18). 

We have 
11
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The right hand side of (24) is of the form  
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On simplification, we have: 

∑
−

=

−−
−

+
−

≈
−

1n

1j
jjjj

n hhUu
U1U

W
U1

U
U1

U )ˆ)}(({
)(

)ln()ˆ
ˆ

ln( γ  (26) 

Thus can be expressed as:  ))ˆ/(ˆln( U1U −

ZaA
U1

U
U1

U ')ln()ˆ
ˆ

ln( +
−

≈
−

, 

where  

)( U1U
Wa n

−
= ,  

A and Z are column vectors given by 

')])()([)],...,()([( xUxuxUxuA 1n1n1n111 −−= −−−γγ  

')ˆ,...,ˆ( 1n1n11 hhhhZ −− −−= . 

Hence we obtain: 

AZCovAa
U1

UVar 2 )())ˆ
ˆ

(ln( '≈
−

. (27) 

Here Cov(Z) is simply the covariance matrix of the least squares estimator of and is '),...,( 1n1 hh −
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available from many standard statistical software. A confidence interval for ]
)(1

ln[
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first be constructed as  
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where  are obtained by replacing the unknown parameters in the expressions of respectively Q, 
a, A with the corresponding sample estimates, and  is the 

A ,a Q ˆˆ,ˆ

2/αz )/( 21100 α− percentile of the standard 
normal distribution. The lower and upper limits of this interval can then be transformed using the 

inverse transformation Qe1
e
+

Q

 to obtain a confidence interval for U (x). 

5. Simulation study  

In order to test the above formulation and its corresponding estimation procedure, three sets of 
simulated data involving 4 attributes were analyzed.  The weights for these four attributes were fixed 
to .05, .1, .25 and .6 for all data sets. The first two values were intentionally chosen small and close to 
each other to find out if the proposed estimation procedure is capable of differentiating them. The 
weight of the last attribute was chosen to be large (.6) to test whether the proposed procedure in 
practice provide estimates beyond the limit. From these weights, the ratio Wj/W4 (j =1, …3) were then 
calculated and using Excel program a set of random normal error with mean zero and standard 
deviation equal to .5 were added to the log of these ratios.   

Table 1, provides a copy of the values used to simulate data under the first set of assessments which is 
based on the relative importance of various attributes to the most preferred one W4. 

 
True 
values 

True 
ratios 
Wj/Wn

hj = 
Ln(Wj/Wn) 

fj = 
normal  
errors 

hj + fj simulated 
ratios,  rj  

0.05 0.0833 -2.4849 -0.0723 -2.5572 0.0775 

0.10 0.1667 -1.7918  0.4645 -1.3273 0.2652 

0.25 0.4167 -0.8755 -0.2065 -1.0820 0.3389 

0.60      

Table 1. Simulated values of relative importance with respect to the most preferred attribute. 

The above weights were also used to obtain the ratios Wj/W1 (j =2, …4) and a set of random normal 
error terms with mean zero and standard deviation equal to .5 was then added to the log of these ratios.  
Table 2. provides a summary of the values used to simulate the second set of assessments which is 
based on the relative importance with respect to the least preferred attribute W1. 
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True 
values 

True ratios 
Wj/W1

γ’
j = 

Ln(Wj/W1) 
fj

’ = normal 
error 

γ’
j +  fj

’ simulated 
ratios, rj’ 

0.05      

0.10 2.000 0.693 0.0518 0.7449 2.1063 

0.25 5.000 1.609 -0.1536 1.4559 4.2883 

0.60 12.000 2.485 0.3370 2.8219 16.8084 

Table 2. Simulated values of relative importance with respect to the least preferred attribute. 

The above ratios (rj and rj’) constituted our 1st simulated data set, which was then treated as the 
dependent variable in Eq. 18.  Using the SPSS regression procedure we estimated the regression 
coefficients hj for this data. The results are given in table 3.   

 
 Unstandardized 

Coefficients 
Standardized 
Coefficients 

t Sig. 

 B Std. Error Beta   

h1 -2.561 .144 -1.142 -17.732 .000 

h2 -1.572 .191 -.496 -8.226 .004 

h3 -1.094 .191 -.345 -5.724 .011 

Table 3. SPSS output for the 1st simulated data set 

From Table 3 we note that all coefficients are significantly different from zero (p-value less than .05).  
Using these estimates, from (13) and (11) we have calculated the weights of all attributes, which are 
reported in table 4. These weights may be considered as estimates of the true weights, which are also 
given in this table. 

We note that the estimates are very close to their corresponding true values and the estimated weight 
for W1, although quite small (.0477), is statistically significant and different from zero. 

 
Estimated weights True weights 

Wj 1st data set 3rd data set 

0.0500 0.0477 0.0553 

0.1000 0.1282 0.1219 

0.2500 0.2067 0.1965 

0.6000 0.6174 0.6263 

Table 4. The true weights used and their corresponding estimates obtained from the analysis of the 
first data set. 
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To generate the second data set we repeated this simulation procedure using the same weights and 
error terms but, we added two constants, c1 = -.7 and c2 = .7 to represent bias in measurement.  These 
values of bias, in practice, may be interpreted as assessing, on average, the relative weights of the 
attributes with respect to the best attribute half of the actual values and assessing the relative weights 
of the attributes with respect to the least preferred one, about twice the actual values.  Finally, a third 
data set similar to the second one was generated. However, for this data set, the value of c1 and c2 
were set to .7 and .5 respectively which are close to each other.  These simulated data sets along with 
their corresponding true values are reported in Table 5. We note from this table that the simulated 
values are quite different from their corresponding true values.  

 
True ratios 2nd data set 3rd data set 

0.08 0.038 .156 

0.17 0.132 .534 

0.42 0.168 .683 

2 4.242 3.473 

5 8.635 7.070 

12 33.848 27.712 

Table 5. Simulated data sets 

For analysis of these data sets, we added two indicator variables to matrix D, as discussed in section 
3.2, to account for possible bias in assessment. The estimated regression coefficients obtained from 
SPSS for the second data set is given in Table 6. As we note form this table, the estimates of ratios 
(hj), although close to previous values, are not statistically significant (p-values greater than .05).  This 
is due to addition of two more columns to matrix D that caused the degree of freedom of residual in 
the regression model to be reduced from 3 to 1.  

 
 Unstandardized 

Coefficients 
 Standardized 

Coefficients
t Sig. 

 B Std. Error Beta   

c1 -.183 .332 -.052 -.551 .679 

c2 .435 .332 .124 1.309 .415 

h1 -3.087 .407 -1.013 -7.591 .083 

h2 -1.959 .311 -.455 -6.308 .100 

h3 -1.483 .311 -.344 -4.776 .131 

Table 6. Regression output for the 2nd simulated data 

Similar to the second dataset, the third simulated data was also analyzed using the SPSS program.  The 
estimated regression coefficients for hj obtained from the regression model were identical to those 
reported for the second dataset. However, the estimates of c1 and c2, reflecting bias in assessments, 
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were 1.217 and .248 respectively, which are different from the previous case as expected.  These 
results may be considered as an indication of the stability of the estimation procedure. 

Finally, we have reanalyzed the third data set by only adding a column of 1 to the above matrix D. 
That is, we assumed equal bias for the data obtained under the two assessment methods and introduced 
a unique intercept. The regression coefficients obtained from analysis of this data set is given in Table 
7, and the estimated weights derived from these regression coefficients are reported in Table 4, which 
may be compared with their corresponding true values. 

 
 Unstandardized 

coefficients 
 Standardized 

coefficients 
t Sig. 

 B Std. Error Beta   

Constant .732 .230  3.190 .086 

h1 -2.428 .187 -1.040 -12.954 .006 

h2 -1.637 .338 -.444 -4.846 .040 

h3 -1.159 .338 -.314 -3.431 .075 

Table 7. Estimated regression coefficients for the third data set 

From Table 7, we note that the estimated regression coefficients are all close to their corresponding 
true values reported in Table 1. and are all statistically significant  at α = .1. This is due to the fact that, 
in generating this data set the values of c1 and c2 were chosen to be close to each other. Thus, the 
assumption of equal intercept for equations (19) and (20) is a plausible assumption. This resulted in 
gaining an additional degree of freedom for the error terms (residuals).  The estimated weights are 
reported in Table 4. As we note from this table, the estimates are very close to those obtained from the 
first data set and to their true values. It is also interesting to note that the estimate of a common bias 
for the two assessment procedures is .732, which is close to the actual values used for generating this 
data set but a bit inflated.  

To examine the effect of the proposed estimation procedure on assessment of the overall utility U, we 
have used our estimates for the third dataset to assess the overall utility of two hypothetical scenarios 
(outcomes) with fixed utilities u1 = (.25, .5, .75, 1) and u2 = (1, .75, .5, .25).  These scenarios were 
intentionally chosen with increasing and decreasing utilities so that we can examine the effect of 
weights on both small as well as large utility values.  

To compare the estimated utilities of these scenarios with those obtained from the raw data (not treated 
for response error), we first derived two sets of weights corresponding to the two assessment 
procedures for the third simulated data set given in Table 5. Then, using (3) we calculated the multi-
attribute utilities of these scenarios based on the two assessment methods as well as their estimates 
using a 95% confidence interval.  These weights along with their corresponding utility values are 
given in Table 8.  

As we note form Table 8, the estimated utilizes are very close to their corresponding true values 
whereas, the utilities calculated on the observed (untreated) weights are far from their corresponding 
true values. We also note that, the 95% confidence intervals for the utilities of these scenarios 
incorporate the corresponding true values.   
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 True 

weights 
Weight based 
on 1st method 

Weight 
based on 2nd 

method 

Estimated weights 

w1 0.05 0.0657 0.0255 0.0553 

w2 0.10 0.2250 0.0885 0.1219 

w3 0.25 0.2878 0.1801 0.1965 

w4 0.60 0.4214 0.7059 0.6263 

U1 0.85 0.8916 0.7662 0.8485 ± 0.0398 

U2 0.40 0.3584 0.4838 0.4015 ± 0.0037 

Table 8. Estimates of weights and utilities for the third data set 

6. Conclusions 

Assessment of parameters of multi-attribute utility functions is subject to measurement error. We took 
a statistical approach to deal with error of measurement and in the context of multi-attribute additive 
model provided an estimation procedure for assessing the relative weights. The estimation method is 
based on assessing ratios of weights and for n attributes, requires only 2(n-1) assessments.  
Consequently, we proposed two versions of the swing assessment method, which provide directly the 
required ratios.   

A major advantage of the estimation procedure is that due to its unique formulation it keeps all the 
parameters within the required bounders without imposing any constraint. That is, the estimates of 
weights will be always between zero and one and always satisfy Eq. (1).  

Since the estimation method is based on regression techniques, one can easily test a variety of 
hypothesis that may have significant importance in application using the standard inference methods 
available for linear models. For example, we can test significance of individual weights or hypothesize 
and test whether the relative weights of a set of attributes are equal.  

Another unique and important contribution of the proposed method is providing confidence interval 
for the overall utility function. Availability of such a confidence interval will provide an opportunity 
for DSS developers to accommodate measurement error in analysis of decision problems and develop 
systems that compare, sort or group multi-attribute alternatives based on their “true” utilities.   
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